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Giant SALR cluster reproduction, with implications for their chemical 

evolution 

 

Particles with SALR (short-range attraction and long-range repulsion) 

interactions are common to many physical systems, especially biological 

and soft matter, yet their behaviour is still not completely understood. 

Using Monte Carlo simulations and a thermodynamic model, it is shown 

here that giant SALR clusters can grow and reproduce in these fluids. 

Giant cluster growth and reproduction should therefore be common to a 

wide range of natural and synthetic systems under suitable conditions. If, 

in addition, cluster fitness selection occurs then chemical evolution of 

giant SALR cluster might be observed in suitable systems. 

Keywords: SALR, clusters, mesoscale, soft matter, reproduction, 

nucleation, competing interactions 

 

I. SALR fluids 

SALR fluids comprise particles with short-range attractions and long-range repulsions1-

3. These model potentials are often used to represent particles in a wide range of 

physical systems, from nuclear4,5 to soft matter6-26. However, even the equilibrium 

behaviour of relatively simple one-component SALR fluids is not completely 

understood27-29. There is therefore great incentive to study the equilibrium and non-

equilibrium behaviour of model SALR fluids, and their mixtures with other particles, 

given the wide range of applications. 

Much work in the soft matter domain has focussed on non-equilibrium aspects 

associated with kinetic arrest and network forming in SALR systems with very strong 

and short-range attractions, relevant to some biological macromolecule16,21 and colloidal 
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dispersions7,20,24. More recently, the equilibrium phase behaviour of systems with 

weaker interactions, that do not undergo kinetic arrest and instead display giant clusters, 

has come into focus3,28-32, as it is recognised that these interactions might be suitable for 

smaller solutes, and in any case this equilibrium behaviour will drive the behaviour of 

SALR dispersions that do become kinetically frustrated.  

As a pertinent example, consider the following problem in cell biology. It is 

generally thought that membrane-less organelles inside cells are generated via classical 

nucleation33. However, the stable existence of multiple organelles of the same type 

within a cell suggests that classical nucleation, by itself, is insufficient as these 

organelles would be expected to combine into one domain. However, their stability as 

multiple independent clusters might be explained in terms of giant SALR clusters. 

Recent simulation3 and theoretical work27-29,32,34,35 has established that the 

equilibrium phase behaviour is rather complex, yet quite similar to that of aqueous 

surfactants in some respects. That is, giant micelle-like clusters (forming a ‘cluster 

fluid’) can occur at low solute densities higher than the ‘critical cluster concentration’ 

(CCC), while modulated fluids with a range of geometrical structures can occur at high 

solute densities. Moreover, the SALR phase diagram is now known to include a first 

order phase transition from a cluster vapour phase to a condensed cluster phase (solid or 

liquid) driven by depletion interactions28,29, and it is argued that the cluster-vapour to 

cluster-liquid transition should only exist within a very narrow range of system 

parameters29. 

Simulations of these fluids have tended to focus on the formation of giant SALR 

clusters in systems with a fixed number of particles (the NVT, or canonical ensemble) at 

high super-saturations such that clusters form quickly from an initially disordered 

dispersion. Cluster reproduction has not been observed in these simulations. Here, we 
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find that by very slowly increasing the number of particles in the system such that it 

remains at, or very close to, equilibrium, these systems display giant clusters that grow 

and reproduce within a particular range of model parameters. 

This work is organised as follows. We introduce the SALR model potential in 

the next section. Then we describe and apply a thermodynamic model to analyse two 

routes to new cluster generation, i.e. nucleation and reproduction. Following this, we 

perform suitable Monte Carlo simulations to check results predicted by this theory. 

Finally, we summarize the work and consider its likely implications for giant SALR 

cluster evolution.  

 

II. The SALR model 

The SALR model potential is usually employed as an ‘effective’ potential between 

particles. Focussing on soft matter, the SALR potential is often employed to model the 

pairwise interaction between biological macromolecule, polyelectrolyte, nanoparticle or 

colloidal solutes in solution. The solvent is not modelled explicitly, i.e. the average 

effect of the solvent is taken into account through definition of the SALR potential. 

Normally, SALR interactions are defined in addition to a particle core, which prevents 

particle overlaps; 

)()()( rrr SALRcore    (1) 

where r is the distance between a pair of particles. In this work, without loss of 

generality, the core is modelled as a hard sphere with diameter d, while a 2-Yukawa 

potential is employed to model short-range attractions and long-range repulsions; 
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where x = r/d and  = 1/kBT, with kB as Boltzmann’s constant and T the temperature. 

The dimensionless SALR parameters Aa, Ar, za and zr (all positive) control the 

magnitude and range of interactions beyond the core. In the following, dimensionless 

reduced units are used by comparing energies to kBT and lengths to d. 

Short-range attractions can represent a wide variety of solute aggregation 

mechanisms, from van der Waals interactions to depletion and solvophobic interactions. 

Long-range repulsions usually represent a screened-coulomb repulsion arising from 

like-charged solutes in the charge-neutralising background solvent. Thus, any particle 

that becomes charged in solution, for example through protonation or de-protonation, 

exhibits an SALR interaction with other like-charged solutes provided the counter-ion is 

very soluble, as is often the case in aqueous solutions. Therefore, SALR interactions are 

suitable for describing the effective interaction between a vast range of solutes in 

solution, including many biological molecules (both small ones like nucleobases and 

macromolecules like DNA), polyelectrolytes, many nanoparticles and charged colloids. 

Giant SALR clusters occur at thermodynamic equilibrium when the short-ranged 

attractive and long-ranged repulsive interactions nearly balance and the overall system 

concentration is sufficiently high, i.e. above the ‘critical cluster concentration’, or CCC. 

An equilibrium phase diagram for the cluster fluid, predicted on the basis of a statistical 

thermodynamic model (essentially, a kind of coarse-grained density functional theory), 

is proposed in earlier work28. We should, therefore, expect to find cluster phases, or 

mesophases as they are sometimes called, in a very wide range of solutions, from 

simple fluid mixtures, to biological and colloidal solutions. In many cases they will be 

difficult to observe directly, unless the particle size is sufficiently large, for example in 

colloidal dispersions. 
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III. A thermodynamic model for giant SALR clusters 

To understand giant SALR cluster reproduction behaviour it is instructive to first 

examine a thermodynamic model of the SALR fluid. The model described in reference 

[28] is suitable for these systems. Indeed, using it, a novel first order phase transition 

was predicted, from cluster vapour to a condensed cluster phase, and later confirmed to 

exist in Monte Carlo simulations29. The model is described fully in that earlier work, 

and therefore only described briefly here. 

It relates the properties of the cluster system to the properties of the constituent 

particles via four independent parameters that describe the state of the cluster fluid,b = 

overall fluid density, c = density of clusters, l = liquid-like cluster body density, and 

dc = cluster diameter. Clusters are modelled as spherical droplets with uniform liquid-

like densities dispersed within a vapour-like background fluid. The energy density, uc, is 

obtained from the energy equation with an approximation for the radial distribution 

function defined in terms of the state parameters. The entropy density, sc, is 

approximated using a suitable combination of hard sphere terms. Thus the cluster fluid 

free energy density is expressed as 
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The first three terms on the right constitute the ‘self’ free energy density of clusters, 

where gHS is the hard sphere radial distribution function, Pc(r) = l(|rc – r|) is the 

cluster density distribution where rc = dc/2 and is the Heaviside step function, and sHS 

is the entropy density of hard spheres. Also,  = cdc
3/6 is the volume fraction of 
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clusters and M = ldc
3/6 is the average number of particles per cluster. The last two 

terms on the right account for the free energy density of the mixture of clusters and 

dispersed particles where i,j stand for cluster (c) or vapour (v) , with Pv(r) = rand 

The effective cluster diameter is determined from the Barker-Henderson 

route 
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where Ucc
eff is the effective cluster – cluster interaction, and the remaining radial 

distribution functions are defined via 
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where gmix is the radial distribution function for a hard sphere mixture with the average 

density of the background vapour v = b – Mc, and a minimum cutoff in the radius, 

rmin, is used equal to the radius where the effective potential has a maximum. The local 

density of the background vapour is g = v/. In all cases, hard sphere functions are 

obtained from Rosenfeld’s fundamental measure density functional theory. Finally, the 

effective pair interactions are  
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For this work a one-component SALR system is chosen for which the low density 

cluster fluid phase behaviour is known, corresponding to that used in earlier work28; Aa 

= 1.8, za = 1.0, Ar = 0.5, and zr = 0.5. 

Figure 1 shows the variation of the Helmholtz free energy for this system 

predicted by this thermodynamic model with reduced volume V = (50)3. Six scenarios 

are considered; systems of 3125, 3250 and 3375 particles with only one or two clusters 

respectively. Results are plotted against the total number of particles within clusters and 

shifted so that the minimum of the single-cluster free energy is zeroed in each case. 

We see a minimum in the free energy for both one and two-cluster states. The 

free energy is nearly symmetric about this minimum, except that for small clusters a 

maximum is reached corresponding to the critical nucleus size, while for increasingly 

large clusters it diverges. The horizontal lines are the free energy for a system without 

any clusters at the same overall system density. Thus, the single cluster nucleation 

barrier is equivalent to the free energy difference between the maximum of the single 

cluster system for small cluster sizes and the uniform fluid at the same overall density.  

Let’s consider the system with 3125 particles first. Initially, before any clusters 

are formed, there exists a considerable free energy barrier, of height 44.5 kBT, against 

nucleation of the first giant cluster. However, once the first cluster forms the free energy 

minimum for a single cluster is also quite deep. Therefore, the one-cluster state is stable. 

The solution with two clusters is much less stable. In principle it can occur, but it will 

be rare and thermodynamically unstable with respect to a single cluster. 

By increasing the number of particles to 3250 we see that the nucleation barrier 

is reduced only slightly to 42.5 kBT, but the free energy minimum of the one-cluster 
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state is now somewhat deeper. However, the two cluster state is now marginally stable 

compared to the one-cluster state, although these states are separated by a free energy 

barrier. By the time the system reaches 3375 particles, the two cluster state is easily the 

more stable, although it is separated from the one cluster state by a free energy barrier. 

Once the two cluster state is formed, the one-cluster state will occur only rarely. Let us 

suppose that the number of particles in the system is gradually increased from 3125 to 

3375 so slowly that the system always remains at or near its equilibrium state. At some 

point between these two limits the two-cluster system becomes more 

thermodynamically stable, and we should expect to observe a transition from one to two 

giant clusters. 

The key issue under discussion in this work concerns how this transition takes 

place. There are two possibilities. Either a nucleation event occurs or the single cluster 

divides into two, i.e. a reproduction event occurs. To understand which process 

dominates we need to consider the respective free energy barriers for these transitions. 

If the free energy barrier for reproduction is much less than the free energy barrier for 

nucleation, then we can expect reproduction will dominate. Let’s consider the system 

with 3250 particles, i.e. just after the equilibrium transition point. We know already the 

free energy barrier for nucleation of the first cluster from a uniform dispersion with 

3250 particles is around 42.5 kBT. However, the free energy barrier for nucleation of the 

second cluster after the first one has formed is even larger, because after nucleation of 

the first cluster the vapour density surrounding the single cluster has reduced and it is 

from this low density vapour that the second cluster must nucleate. 

In fact, at the transition point where the two phase branches cross, denoted by a 

circular symbol in Figure 1, the vapour surrounding the first cluster has reduced to a 

density of 0.02092 from 0.026 when there are no clusters. We can therefore estimate the 
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free energy barrier for nucleation of the second cluster using the free energy model by 

considering nucleation from this lower density vapour. The two cases, one with uniform 

vapour density of 0.02092 and the other with a single giant cluster at the same overall 

system density, are shown in Figure 2. As we expected, the nucleation barrier for the 

second cluster is higher, at 48 kBT. 

To estimate the nucleation barrier for reproduction we can investigate the one 

and two-cluster states at the transition point where the two phase branches cross in 

Figure 1. Clearly, at this transition point these systems have the same number of 

particles overall, and the same number of particles within the clusters. In addition, the 

thermodynamic model predicts they have the same background vapour density (0.0198), 

and almost the same cluster internal body density (0.751 vs 0.752) for one and two 

clusters respectively. They thus have almost the same total cluster volume. Therefore, to 

transform from the one to two-cluster state, essentially all that need happen is the single 

cluster ‘morphs’ without any significant particle transfer between cluster and 

background vapour, or any significant change in cluster volume. This can be achieved 

by first transforming from a sphere to a ‘sausage’ shape (a cylinder with hemispherical 

ends), and then by ‘pinching’ in the middle to form two individual spherical clusters. 

Geometrically, there is a significant change in the interfacial area of the liquid-like 

cluster/s during this transformation. But since it takes place without any change in 

Helmholtz free energy, we can conclude that the surface tension during this transition is 

essentially zero, because the surface tension is defined as the rate of change of free 

energy with interfacial area, under suitable constraints. In other words, the one to two-

cluster transition takes place when the one-cluster state approaches zero interfacial 

tension. We can therefore expect that the free energy barrier between the one and two-

cluster states is similar to that shown in Figure 1, i.e. about 10 kBT at the transition. This 
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relatively small free energy barrier will decrease quickly as the number of particles in 

the one-cluster system continues to increase past the transition point. When compared to 

the free energy barrier for nucleation of the second cluster, we can see that cluster 

reproduction is expected to dominate. 

 

IV. Monte Carlo simulation of Giant SALR cluster reproduction 

In the previous section we used a thermodynamic model to predict the relative rates of 

two processes in the presence of an existing giant SALR cluster; cluster reproduction 

versus cluster nucleation. We saw that, according to the theory, cluster reproduction is 

expected to dominate. Moreover, this thermodynamic model predicts this behaviour is 

universal for these giant SALR clusters, i.e. it is not a special case for the set of SALR 

parameters chosen. 

To investigate whether this outcome is an artefact of the theory this prediction is 

tested by comparison with simulations. Brownian dynamics is a suitable method for 

simulating molecular and colloidal dispersions in dense solvents, which are the type of 

soft matter systems generally represented by the effective SALR potential. But such 

methods struggle to deal with hard core particles, as are used here. Fortunately, it has 

been shown36,37 that the standard Metropolis Monte Carlo method, which is able to treat 

hard core particles, reproduces the collective dynamical properties of Brownian 

dynamics simulations quite accurately for spherical particles provided only single 

particle moves with small displacements are allowed. It is then possible to define an 

effective time-step37, if desired, corresponding to a Monte Carlo step, and such 

simulations belong to a class of ‘dynamic Monte Carlo’ simulation method38. Moreover, 

the aim here is to allow for a very slow increase in the number of particles in a fixed 

simulation volume, which might correspond experimentally to slowly concentrating the 
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solution through solvent evaporation, for example. Again, a standard Monte Carlo 

method, namely Grand Canonical Monte Carlo (GCMC) should suffice to reproduce 

this behaviour, provided the rate of trial particle insertions and deletions is sufficiently 

slow. Indeed, as the intention is to allow for only a gradual increase in the number of 

particles, and we are not actually interested in equilibrating the system at a given 

chemical potential, only trial GCMC insertions need be performed at a fictitious 

chemical potential – trail deletions are unnecessary. Therefore, a standard type of 

GCMC method, where trail deletions are never performed, should be an adequate 

method for determining the average system dynamics of such solute dispersions, 

provided only small particle displacements are made, there are no ‘special’ or non-

physical Monte Carlo moves, and trial insertions are suitably rare. 

The length of a simulation is measured in terms of cycles, where a cycle consists 

of an attempt to move each particle and possibly an attempt to insert one particle. A 

cubic simulation box of side length 50, with periodic boundaries in each direction, and a 

long-ranged cutoff of half the box length is employed. Only trial displacements with a 

maximum length of 0.35 are allowed and the fictitious fugacity, sufficient for 

reasonable particle insertion acceptance rates, is set to 0.016. The same SALR 

parameters are used as before, i.e. Aa = 1.8, za = 1.0, Ar = 0.5, and zr = 0.5. To ensure 

that between trial particle insertions simulations are maintained very close to 

equilibrium, the rate of insertion attempts must be held very low. To determine a 

suitable rate, simulations are performed with a range of trail insertion frequencies. 

Behaviour should converge to a characteristic type as the rate is reduced. 

Because the aim here is to determine the system’s behaviour in the presence of 

an existing cluster, an initial simulation is used to generate a starting configuration 

consisting of a single giant cluster. This initial simulation began with 2000 particles 
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randomly placed in the cubic simulation box, with trail particle insertions every 1000 

cycles. After 100,000 cycles a single giant SALR cluster formed. This configuration is 

used as input to the following simulations. 

Figure 3 displays a series of snapshots from three further Monte Carlo 

simulations, all initialized with the same single-cluster configuration as described 

above, corresponding to trial insertions every 100, 300, and 1000 cycles. In Figure 3a, 

corresponding to one insertion attempt per 100 cycles, we see that a second cluster 

nucleates just before 125,000 cycles, and then a third cluster nucleates just before 

225,000 cycles. After this, each cluster continues to grow, eventually forming sausage-

shaped clusters. This simulation shows that a rate of one insertion attempt per 100 

cycles is too high to maintain the system sufficiently close to equilibrium for 

reproduction to occur. Instead, the rate at which particles accumulate in the dispersed 

phase is higher than the rate at which particles can diffuse to existing clusters. 

Therefore, the dispersed phase becomes over-concentrated, and nucleation is preferred. 

In Figure 3b, corresponding to one insertion attempt per 300 cycles, we do not 

see any nucleation or reproduction events. Instead, the existing cluster continues to 

grow, eventually forming a very long sausage-shaped cluster that spans the simulation 

box. This occurs because now the rate of accumulation of particles in the dispersed 

phase is lower than the rate of diffusion to the existing cluster. However, the rate of 

diffusion to the existing cluster from the dispersed phase exceeds the rate of diffusion of 

particles within the cluster. Therefore, the cluster cannot internally equilibrate and 

reproduce, and instead continues to grow. 

Finally, in Figure 3c, corresponding to one insertion attempt per 1000 cycles, we 

only see reproduction events, without any nucleation events. The first reproduction 

event takes place just before 600,000 cycles, and then the lower daughter reproduces 
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just after 1 million cycles, while the other daughter reproduces just before 1.6 million 

cycles. Reproduction occurs here because the rate of diffusion of particles from the 

dispersed phase to existing clusters, and the rate of diffusion within clusters, is faster 

than the rate at which particles accumulate in the system. In other words, the rate of 

accumulation of particles is sufficiently slow that the system can remain sufficiently 

close to equilibrium for reproduction to occur. This supports the theoretical prediction. 

Essentially, existing clusters act as nucleation centres for production of further 

clusters. In reference [28] we saw many giant clusters nucleate simultaneously within a 

canonical ensemble simulation. That occurred because the system was deliberately 

initiated with a substantially over-saturated initial state, i.e. a massive excess of particles 

above the CCC. This is not the case here. Here, the system is initiated either below or 

only slightly above the CCC. Therefore, only a single cluster nucleation event is 

observed initially, with reproduction dominating afterwards provided the rate of 

accumulation of particles is sufficiently slow. 

 

V. Potential for chemical evolution of giant SALR clusters 

The basis of biological evolution is self-replication together with random genetic 

changes between generations and fitness selection39. Changes to the genetic code can 

lead to a wide range of potential and actual genetic life forms. Those life forms best 

suited to the changing environment are able to proliferate more quickly, and are said to 

be successful. The less successful life forms are out-competed for resources and 

therefore become evolutionary dead-ends. 

Biological genetic evolution has inspired many powerful numerical optimisation 

algorithms, successful across science and engineering. The general process for these 

evolutionary algorithms mirrors the basic genetic evolutionary steps of biology40. First, 
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a new population is created from the preceding one by performing simple random 

operations on their ‘genetic’ information. Next, the fitness of all members of the 

population is assessed. The fitter members of the population are selected (survive) while 

the less fit are discarded (die). The cycle then repeats. Any process that has these 

repeating steps, i.e. self-replication with small random changes followed by selection of 

the fitter members, leads to an optimisation process. Here, this is referred to as 

‘evolution’. 

The simulations and theoretical results just described demonstrate that giant 

SALR cluster growth and reproduction can occur in SALR fluids in preference to 

nucleation events provided the rate of accumulation of particles is sufficiently slow. 

However, these simulations and the theory involve only one solute component. By 

definition, chemical evolution is absent. Clearly, fitness selection is also absent. What 

can we expect to observe in dispersions of several components, where there is at least 

one SALR component? As for any phase equilibrium involving mixtures, we can expect 

additional components to partition between the dispersed phase and liquid-like cluster 

phases. That is, we can expect clusters to be internally mixed with a wide range of 

possible compositions. Depending on the miscibility of each component within clusters, 

and the various interfacial tensions, we might also expect more than one type of cluster 

to occur, or to observe structured clusters (e.g. core-shell types). 

However, such systems remain relatively simple. Chemical reactions, interfaces, 

physical agitation, gravity, and chemical potential, pressure and temperature gradients 

are some of the more important ingredients that could be included. Chemical reactions 

in particular are necessary to generate a diversity of increasingly complex chemical 

components required for giant SALR cluster evolution. An important feature of these 

systems is that the rate of reaction between components within giant clusters would be 
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increased, relative to the dispersed state, due to the enhanced concentration of chemicals 

within clusters. Therefore, each cluster could be considered a nano/microscale chemical 

reactor, in much the same way as modern cells. 

However, an optimised process of chemical evolution of giant SALR clusters 

requires more than just cluster growth and reproduction, even allowing for chemical 

reactions. It is essential that the information content (chemical composition and any 

secondary and higher order structures) of a cluster is preserved with only minor changes 

between generations. Modern cells achieve this fundamentally through the use of very 

complex auto-catalytic reaction networks and bilayer lipid cell membranes. Complex 

auto-catalytic reaction networks ensure the reproduction of chemical information within 

cells with high precision, while lipid cell membranes ensure this information is only 

transferred between cells via reproduction. It is not known whether both of these 

features are strictly required to enable the chemical evolution of giant SALR clusters. 

That is, simple auto-catalytic reaction networks embedded within giant SALR clusters 

without lipid membranes might suffice. Future work will aim to test this hypothesis. 

Finally, if through chemical evolution giant SALR clusters become so chemically 

complex that functioning clusters cannot be formed through nucleation in a reasonable 

time, yet they can still form through reproduction in a reasonable time, then might these 

clusters be said to exhibit ‘death’, and therefore perhaps also ‘life’? 

 

VI. Conclusions 

It is demonstrated here that giant SALR clusters can ‘reproduce’. Essentially, when the 

system concentration increases sufficiently slowly, such as might be achieved through 

the gradual evaporation of solvent, giant clusters serve as nucleation centers for the 

production of further clusters, in preference to homogeneous nucleation. For chemical 
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mixtures able to undergo reactions that also display giant SALR clusters, chemical 

evolution of clusters might be observed in suitable systems with evaporation cycles. 

Future work will aim to test this hypothesis using in-silico methods. This observation 

could have profound consequences for a wide range of soft matter systems. 

 

Acknowledgements: I thank Laura Machesky and Robert Insall for some helpful 

discussions. 
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Figures 

 

Figure 1. Shifted Helmholtz free energy for giant SALR clusters in a volume of (50)3 

for an SALR system (see text) with Aa = 1.8, za = 1.0, Ar = 0.5, zr = 0.5, as predicted by 

the thermodynamic model of reference [28]. The curved lines correspond to; blue – one 

cluster, red – two cluster, systems with 3125 (dash-dot lines), 3250 (full lines) or 3375 

(dashed lines) particles in total (corresponding to reduced densities of 0.02575, 0.026, 

and 0.02625 respectively). Horizontal lines indicate the free energy of the uniform fluid 

(without giant clusters) relative to the one-cluster case. The arrow indicates the 

predicted free energy barrier for nucleation of the first cluster. The small circle indicates 

the approximate free energy barrier height for the one-cluster to two-cluster transition. 
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Figure 2. As for Figure 1, except for a reduced density of 0.02092, corresponding to 

2615 particles. The arrow indicates the approximate free energy barrier for nucleation of 

the second cluster. 
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Figure 3. Snapshots from Monte Carlo simulations illustrating giant SALR cluster 

growth and reproduction, where t is the number of Monte Carlo cycles performed. 

Simulations are initiated from the same configuration with one large cluster, where Aa = 

1.8 (see text). The three simulations have a) one insertion attempt per 100 cycles, (b) 

one insertion attempt per 300 cycles, and c) one insertion attempt per 1000 cycles. 

a b c 


