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Abstract
In this paper, we develop an analytical stability criterion for a five-body symmetrical system,
called the Caledonian Symmetric Five-Body Problem (CS5BP), which has two pairs of equal
masses and a fifth mass located at the centre of mass. The CS5BP is a planar problem that
is configured to utilise past–future symmetry and dynamical symmetry. The introduction of
symmetries greatly reduces the dimensions of the five-body problem. Sundman’s inequality
is applied to derive boundary surfaces to the allowed real motion of the system. This enables
the derivation of a stability criterion valid for all time for the hierarchical stability of the
CS5BP. We show that the hierarchical stability depends solely on the Szebehely constant C0

which is a dimensionless function involving the total energy and angular momentum. We
then explore the effect on the stability of the whole system of varying the relative sizes of the
masses. The CS5BP is hierarchically stable forC0 > 0.065946. This criterion can be applied
in the investigation of the stability of quintuple hierarchical stellar systems and symmetrical
planetary systems.

Keywords Few-body problem · Five-body problem · Hierarchical stability · Celestial
mechanics · Stellar dynamics

1 Introduction

The five-body system considered in this paper is frequently hierarchical in structure. In
hierarchical N -body systems, themasses involved can be divided into subgroups. The relative
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motion of the subgroups is dominated by their gravitational interaction with one another.
Within each subgroup, the relative motion of the masses is dominated by their gravitational
interaction with other masses in that subgroup. The subgroups themselves may be likewise
divisible into further subgroups in a recursive fashion.

Analytical studies of the stability of hierarchical systems, of three or more bodies, are
challenging because of the greater number of variables involved with increasing numbers of
bodies and the limitation of just 10 integrals that exist in the gravitational N -body problem.
The utilisation of symmetries and/or neglecting themasses of some of the bodies compared to
others can simplify the dynamical problem and enable global analytical stability conditions
to be derived. These symmetric and restricted few-body systemswith their analytical stability
criteria can then provide useful information on the stability of the general few-body system
when near symmetry or the restricted situation.

Even with symmetrical reductions, analytical stability derivations for four- and five-body
problems are rare. In the general three-body problem, Marchal and Saari (1975) and Zare
(1976, 1977) derived a stability criterion. For this the energy H and angular momentum c,
combine to produce a critical value c2Hcrit , which governs the closing of phase space into
topologically separate subregions. Different hierarchical arrangements of the system exist in
different subregions of the space of real motion. For values of c2H > c2Hcrit , gaps appear
in real motion space so that it is physically impossible to go from one hierarchical subregion
to another.

In twopapers byLoks andSergysels (1985), andSergysels andLoks (1987), the three-body
c2H stability criterion was extended to the general four-body problem. Sundman’s inequality
for N bodies was applied to the four-body problem in generalised Jacobi coordinates and
zero-velocity surfaces were derived in three-dimensional space. The zero-velocity surfaces
define the limits of the three-dimensional regions in which motion can take place.

Sweatman (2002, 2006) analyses the linear stability of a collinear symmetrical four-body
system where the masses are mirror images about the centre of mass. These Schubart-like
orbits are stable for some mass ratios but unstable for others.

Roy and Steves (2000) and Steves and Roy (2001) developed a symmetrically restricted
four-body problem called the Caledonian Symmetric Four-Body Problem (CSFBP). The
CSFBP is a planar problem with time symmetry and rotational symmetry about the centre of
mass. These authors derived an analytical stability criterion valid for all time, showing that the
hierarchical stability of the CSFBP depends solely on a parameter which is a dimensionless
function of energy, angular momentum, total mass of the system and the gravitational con-
stant. They called this parameter the Szebehely Constant,C0. The stability criterion has been
verified numerically by Széll et al. (2004c). The relationship between the chaotic behaviour
of the phase space of the CSFBP and its global stability is analysed by Széll et al. (2004a, b).

More recently, Gong and Liu (2016) derived a stability criterion for the coplanar four-
body problem utilising the surfaces of zero velocity and the concepts of Hill stability. They
use the criterion to study the Hill stability of the Sun–Jupiter–Ganymede–Callisto system.
Chopovda and Sweatman (2018) studied a family of CSFBP symmetric periodic four-body
orbits, and their stability, in the plane.

The Caledonian Symmetric Five-Body Problem (CS5BP) is obtained from the CSFBP by
adding a fifth, stationarymass at the centre ofmass of the system (Shoaib 2004).Alternatively,
wemay consider the CSFBP as a subset of the CS5BP problem inwhich the central stationary
mass is of negligible mass in relation to the other masses. Some preliminary, primarily
numerical, stability results for the CS5BP are presented by Shoaib et al. (2008). In the present
paper, we develop a general analytical stability criterion for the CS5BP and investigate how
variation of the masses effects the stability of the whole CS5BP system.

123



Analytical stability in the Caledonian Symmetric Five-Body Problem Page 3 of 23 53

In Sect. 2, we define the CS5BP. The equations of motion, the force function and energy
integral are given in Sect. 3. The constraints on the system and the regions of allowed motion
are considered in Sects. 4, 5 and 6.

The Szebehely constant, C0, is a function of the total energy and angular momentum. In
Sect. 7, we explain its role in determining the topological stability of the phase space. This
topological stability is explored in Sect. 8, for a range of mass ratios of central body and
symmetric pairs. We conclude in Sect. 9.

2 Definition of the Caledonian Symmetric Five-Body Problem (CS5BP)

The CS5BP consists of two symmetrical pairs of masses orbiting a stationary central mass.
Figures 1 and 2 , respectively, show the initial configuration of the CS5BP and the coplanar
configuration at some later time t . We note there is a difference with the previous notation
and scaling for the CSFBP. This is detailed in Appendix A.

The CS5BP utilises both past–future symmetry and dynamical symmetry. Past–future
symmetry occurs when the dynamical system passes through a mirror configuration. This is
a special arrangement of all the bodies so that every velocity vector is perpendicular to all
the position vectors from the centre of mass of the system (Roy and Ovenden 1955). The
motion after the mirror configuration at t = 0 is a mirror image of the motion before t = 0.

By additionally ensuring that the two bodies on one side of the centre of mass are balanced
symmetrically by the two bodies on the other side of the centre of mass, we gain dynamical
symmetry. The evolving orbital motion of the bodies therefore always forms a parallelogram
of variable size and orientation.

We assign the five bodies to be point masses mi i = 0 . . . 4. With respect to the centre of
mass, the position and velocity vectors of the bodies are given by ri and Vi = ṙi , respectively,
i = 0 . . . 4. The CS5BP has the following conditions:

1. m0 is stationary at the centre of mass of the system. Two symmetrically moving pairs are
formed by m1 with m3 and m2 with m4, so that

m1 = m3, m2 = m4 (1)

and

r1 = −r3, r2 = −r4, r0 = 0,

ṙ1 = −ṙ3, ṙ2 = −ṙ4, ṙ0 = 0. (2)

These remain valid for all time.
2. To ensure past–future symmetry, the initial configuration, t = 0, is arranged so that the

masses are collinear and all their velocity vectors are perpendicular to all their position
vectors (cf. Fig. 1). So initially

r1 × r2 = 0, r1 · ṙ1 = 0, r2 · ṙ2 = 0. (3)

In this paper, we study the coplanar CS5BP and therefore can simplify the velocity vectors
further to the coplanar case.

The total mass of the system is

M = m0 + 2 (m1 + m2) . (4)

We introduce mass ratios μ0 = m0
M , μ1 = m1

M , μ2 = m2
M , so then Equation (4) becomes

μ0 + 2 (μ1 + μ2) = 1 (5)
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Fig. 1 Initial configuration of the CS5BP (Shoaib et al. 2008)

and we note that

0 ≤ μ0 ≤ 1, 0 ≤ μ1, μ2 ≤ 0.5. (6)

3 The equations of motion, the force potential function and the energy
integral

The equations of motion for the general five-body system are

mi r̈i = ∇iU , i = 0, 1, 2, 3, 4, (7)

where U is the force potential function given by

U = G
4∑

i=0

4∑

j=i+1

mim j

ri j
, (8)

∇i = i ∂
∂xi

+ j ∂
∂ yi

+ k ∂
∂zi

, i, j,k are unit vectors along the rectangular axes Ox , Oy, Oz ,
respectively, and ri j = |ri − r j |. The centre of mass of the system O is at rest and is located
at the origin. xi , yi , zi are the rectangular coordinates of mi .

Using the symmetry conditions of Eq. (2), the force potential functionU (Eq. (8)) becomes

U = G

[
2m0

(
m1

r1
+ m2

r2

)
+ 1

2

(
m2

1

r1
+ m2

2

r2

)

+2m1m2

⎛

⎝ 1

r12
+ 1√

2
(
r21 + r22

) − r212

⎞

⎠

⎤

⎦ . (9)

The energy H = T − U , where T is the kinetic energy. Since m0 is stationary, it is not
involved in the kinetic energy T . Similarly, its fixed location at the centre of mass means that
it is absent from the angular momentum c and the moment of inertia I . Therefore

T = m1ṙ
2
1 + m2ṙ

2
2 , I = 2

(
m1r

2
1 + m2r

2
2

)
(10)

and
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Fig. 2 Configuration of the coplanar CS5BP for t > 0 (Shoaib et al. 2008)

H = (
m1ṙ

2
1 + m2ṙ

2
2

)

−G

[
2m0

(
m1

r1
+ m2

r2

)
+ 1

2

(
m2

1

r1
+ m2

2

r2

)

+2m1m2

⎛

⎝ 1

r12
+ 1√

2
(
r21 + r22

) − r212

⎞

⎠

⎤

⎦ . (11)

The energy has a constant value H = −E0, so that E0 will be positive for a gravitationally
bound system. (A gravitationally bound system is onewhere it is impossible for all themasses
to escape, i.e. at least two masses must remain close to one another.) Alongside the mass
ratios μi , we introduce the dimensionless variables ρ1, ρ2 and ρ12, and dimensionless time
τ , where:

ρ1 = E0r1
GM2 ; ρ2 = E0r2

GM2 ; ρ12 = E0r12
GM2 ; τ = E3/2

0 t

GM5/2
.

So now, dividing by E0, Eq. (11) becomes

− 1 = μ1

(
dρ1

dτ

)2

+ μ2

(
dρ2

dτ

)2

− 2μ0

(
μ1

ρ1
+ μ2

ρ2

)

−1

2

(
μ2
1

ρ1
+ μ2

2

ρ2

)
− 2μ1μ2

ρ12
− 2μ1μ2√

2
(
ρ2
1 + ρ2

2

) − ρ2
12

. (12)
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4 The boundary surface for real motion

For the CSFBP, Steves and Roy (2001) show how the region of real motion can be progres-
sively constrainedwith boundaries arising from the kinematic constraints, the surfaces of zero
velocity using the energy integral, and finally the surfaces of separation using Sundman’s
Inequality. A similar approach can be used in the CS5BP.

Because of dynamical symmetry, only the motions of m1 and m2 are needed to determine
the motion of the whole CS5BP system. Their positions are fully described by providing
the distances r1, r2 and r12. The regions of possible motion of the bodies m1 and m2 can
therefore be displayed as a boundary surface in the corresponding three-dimensional space
in the dimensionless coordinates ρ1, ρ2, and ρ12.

An arbitrary point (ρ1, ρ2, ρ12) in this space has the following kinematic constraints

|ρ1 − ρ2| ≤ ρ12 ≤ ρ1 + ρ2. (13)

Quintuple collision, the simultaneous collision of all five bodies, corresponds to the origin
of the ρ1ρ2ρ12 space. Apart from this, there are four distinct types of two- and three-body
collisions that may occur:

1. 12 Collision. If ρ12 = 0, thenm1 collides withm2, andm3 collides withm4. The inequal-
ities (13) are only satisfied when ρ2 = ρ1.

2. 14 Collision. If ρ12 =
√
2(ρ2

1 + ρ2
2 ), then m1 collides with m4, and m2 collides with m3.

The inequalities (13) are only satisfied when ρ1 = ρ2 and so ρ12 = 2ρ1.
3. 13 Collision. If ρ1 = 0 then m1, m3 and m0 collide in the centre. The inequalities (13)

are only satisfied when ρ12 = ρ2.
4. 24 Collision. If ρ2 = 0 then m2, m4 and m0 collide in the centre. The inequalities (13)

are only satisfied when ρ12 = ρ1.

For real motion, the kinetic energymust be greater than or equal to zero (U+H ≥ 0). This
provides zero-velocity surfaces that further constrain and bound the region of real motion.
Real motion for the CS5BP takes place in four tube-like regions of the ρ1ρ2ρ12 space (Fig. 3).
This is similar to the special case of the CSFBP (Roy and Steves 2000). Near the origin, the
four tubes connect forming a region in which strong interplay between all of the bodies
occurs. Each tube begins near the origin, contains the line corresponding to one of the four
distinct types of two- and three-body collisions and corresponds to a particular five-body
hierarchy. The four hierarchies are:

1. 12 Hierarchy. A double binary hierarchy where m1 and m2 orbit their centre of mass C12

and m3 and m4 orbit their centre of mass C34. The centres of mass C12 and C34 orbit
each other about m0 at the centre of mass of the five-body system. The 12 hierarchy is
the allowed motion in the tube located along ρ1 = ρ2, ρ12 = 0.

2. 14 Hierarchy. A double binary hierarchy where m1 and m4 orbit their centre of mass C14

and m2 and m3 orbit their centre of mass C23. The centres of mass C14 and C23 orbit
each other about m0 at the centre of mass of the five-body system. The 14 hierarchy is
the allowed motion in the tube located along ρ1 = ρ2, ρ12 = 2ρ1.

3. 13 Hierarchy. A single trinary hierarchy wherem1 andm3 orbitm0 at their centre of mass
as a central trinary, i.e. they form a three-mass group at the centre of the system. The other
massesm2 andm4 orbit around this trinary. The 13 hierarchy is the allowed motion in the
tube located along ρ1 = 0 and the ρ2ρ12 plane.

4. 24 Hierarchy. A single trinary hierarchy where m2 and m4 orbit m0 at their centre of
mass as a central trinary. The other masses m1 and m3 orbit around this trinary. The 24
hierarchy is the allowed motion in the tube located along ρ2 = 0 and the ρ1ρ12 plane.
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Fig. 3 General tube-like structure
of the surfaces of zero velocity
for the CS5BP. (This figure is
based on the corresponding
CSFBP diagram of Roy and
Steves (2000)

A further sculpting of the ρ1ρ2ρ12 space for realmotion can be found using the generalised
Sundman inequality (Muller 1986; Roy 2005).

U + H ≥ c2

2I
. (14)

This inequality (14) further decreases the space available for real motion. It introduces for-
bidden regions near the origin.

For the CS5BP, the inequality (14) can be written solely in terms of r1, r2 and r12

G

⎡

⎣2m0

(
m1

r1
+ m2

r2

)
+ 1

2

(
m2

1

r1
+ m2

2

r2

)
+ 2m1m2

r12

+ 2m1m2√
2

(
r21 + r22

) − r212

⎤

⎦ ≥ c2

4(m1r21 + m2r22 )
+ E0. (15)

We introduce the mass ratios μi , the dimensionless variables ρ1, ρ2 and ρ12, and a new
dimensionless quantity

C0 = c2E0

G2M5
, (16)
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called the Szebehely constant (Steves and Roy 2001), and divide by E0 (we assume E0 �= 0).
Then, our version of Sundman’s inequality (15) becomes

2μ0

(
μ1

ρ1
+ μ2

ρ2

)
+ 1

2

(
μ2
1

ρ1
+ μ2

2

ρ2

)
+ 2μ1μ2

ρ12

+ 2μ1μ2√
2

(
ρ2
1 + ρ2

2

) − ρ2
12

≥ C0

4
(
μ1ρ

2
1 + μ2ρ

2
2

) + 1. (17)

Recall that, if the mass ratios μ0 and μ1 are known, then mass ratio μ2 is determined
by equation (5). Thus, for a CS5BP system, with given values of μ0 and μ1 and Szebehely
constant (i.e. angular momentum and energy combination)C0, equations (17) and (13) define
a surface in dimensionless ρ1ρ2ρ12 coordinate space that confines the possible motion.

If any region of the accessible ρ1ρ2ρ12 space is totally disconnected from any other,
then the hierarchical arrangement of the system in that region cannot physically evolve into
the hierarchical arrangements possible in the other regions of real motion. Thus, a CS5BP
system existing in that hierarchical arrangement would be hierarchically stable for all time.
The topology or disconnectedness of the accessible ρ1ρ2ρ12 space, that is contained within
the boundary surface given by (17) and (13), can therefore provide a stability criterion for
the system.

5 Determining the regions of allowedmotion in the CS5BP

In this section, we further develop explicit formulae for the boundary surface of real motion.
Thesewill enable us to draw the surface and identify the critical points for which the topology,
and therefore the hierarchical stability of the system, changes.

It is useful to parameterise the surface in terms of the variables

yi = ρi

ρn
, for i = 1, 2, and x12 = ρ12

ρn
, (18)

where ρn = max(ρ1, ρ2). This allows us to study the phase space in two parts.

– Case (i): if ρ1 ≥ ρ2, then ρn = ρ1; y1 = 1; y2 = ρ2
ρ1

and x12 = ρ12
ρ1

.

– Case (ii): if ρ2 ≥ ρ1, then ρn = ρ2; y2 = 1; y1 = ρ1
ρ2

and x12 = ρ12
ρ2

.

In the new variables, Sundman’s inequality takes the form

1

ρn

⎡

⎣2μ0

(
μ1

y1
+ μ2

y2

)
+ 1

2

(
μ2
1

y1
+ μ2

2

y2

)
+ 2μ1μ2

x12

+ 2μ1μ2√
2

(
y21 + y22

) − x212

⎤

⎦ ≥ 1

ρ2
n

C0

4
(
μ1y21 + μ2y22

) + 1 (19)

and the kinematic constraints (13) become

|y1 − y2| ≤ x12 ≤ y1 + y2. (20)

Taking the equality sign in (19), we obtain the following quadratic equation which defines
the boundary surface between real and imaginary motion,

ρ2
n − Aρn + B = 0, (21)
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where

A = 2μ0

(
μ1

y1
+ μ2

y2

)
+ 1

2

(
μ2
1

y1
+ μ2

2

y2

)

+2μ1μ2

⎛

⎝ 1

x12
+ 1√

2
(
y21 + y22

) − x212

⎞

⎠ , (22)

and

B = C0

4
(
μ1y21 + μ2y22

) . (23)

The solution of the above quadratic equation (21) is

ρn = 1

2

√
C

μ1y21 + μ2y22

(
1 ±

√
1 − C0

C

)
, (24)

where

C = A2 (
μ1y

2
1 + μ2y

2
2

)
, (25)

a function of y1, y2 and x12. Thus for Case (i), ρ1 ≥ ρ2, when y1 = 1,

ρ1 = 1

2

√
C

μ1 + μ2y22

(
1 ±

√
1 − C0

C

)
, (26)

where

C = (
μ1 + μ2y

2
2

) ×
⎡

⎣2μ0

(
μ1 + μ2

y2

)

+1

2

(
μ2
1 + μ2

2

y22

)

+ 2μ1μ2

⎛

⎝ 1

x12
+ 1√

2
(
1 + y22

) − x212

⎞

⎠

⎤

⎦
2

, (27)

with the constraints, from (18) and (20),

0 ≤ y2 ≤ 1 1 − y2 ≤ x12 ≤ 1 + y2. (28)

For a given ρ1, the values of ρ2 and ρ12 can be reconstructed by

ρ2 = y2ρ1 ρ12 = x12ρ1. (29)

For Case (ii), ρ2 ≥ ρ1, we can proceed similarly. The calculation is essentially the same
as for Case (i) but with the indices 1 and 2 exchanged.

These cases, (i) and (ii), provide an explicit set of formulae for determining points
(ρ1, ρ2, ρ12) on the boundary surface. For Case (i), the parameters y2 and x12 are varied
within the constraints (28). For Case (ii), there are similar constraints for y1 and x12. In the
two cases, y2 and y1, respectively, are the gradients of straight lines through the origin O in
the ρ1ρ2 plane. Further, x12 is the gradient of a straight line through the origin O in either
the ρ1ρ12 or the ρ2ρ12 plane.
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In the CSFBP, Steves and Roy (2001) found that, as C0 is increased, forbidden regions
near the origin grow to the point where they meet the boundary walls of the tubes, resulting
in disconnected regions. This is also the case for the CS5BP.

6 The projection of the space of real motion into the �1�2 plane

A useful tool, for assessing the connectivity of the regions of motion, is the projection of the
extreme values of the boundary surface of real motion onto the ρ1ρ2 plane (Steves and Roy
2001; Shoaib et al. 2008).

6.1 Maximum extension of the real motion projected in�1�2 space

Equation (13) and its equivalent in the new variables (20) give the extreme values of ρ12 and
x12, respectively. The intersection of the kinematic constraints with the boundary surface
(24) gives curves when projected onto the ρ1ρ2 plane. These display the four tubes as three
arms. The two tubes located near ρ1 ≈ ρ2 lie one on top of the other in the projection, giving
one arm near ρ1 ≈ ρ2.

The projection curves of the maximum widths of the tubes can be found by substituting
the equalities of (20) into the boundary surface (24). Both limits x12+ = y1 + y2 and
x12− = |y1 − y2| give the same equations, indicating that the maximum widths at the x12+
upper location and the x12− lower location are identical.

We find the equations giving the maximum projections in the two cases. For Case (i),
ρ1 ≥ ρ2, the behaviour of C depends solely on y2, and we write C = Ce(y2). Then, Eq. (24)
becomes

ρ1 = 1

2

√
Ce(y2)

μ1 + μ2y22

(
1 ±

√

1 − C0

Ce(y2)

)
, (30)

where

Ce(y2) = (
μ1 + μ2y

2
2

)
⎡

⎣2μ0

(
μ1 + μ2

y2

)

+1

2

(
μ2
1 + μ2

2

y2

)
+ 4μ1μ2

1

1 − y22

⎤

⎦
2

. (31)

The corresponding variable ρ2 is given by

ρ2 = y2ρ1. (32)

As before, Case (ii), ρ2 ≥ ρ1, is essentially the same as Case (i) but with the indices 1 and 2
exchanged. We have

ρ2 = 1

2

√
C ′
e(y1)

μ1y21 + μ2

(
1 ±

√
1 − C0

C ′
e(y1)

)
, (33)
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(a) (b)

(c) (d)

Fig. 4 μ0 = μ1 = μ2 = 0.2 (the 5-body equal masses case): a, b: the projection of the boundary surface
onto the ρ1ρ2 plane (a) C0 = R1 = 0.0392219 (b) C0 = R4 = 0.0655514 (given by Eqs. (30) and (32)
for ρ1 ≥ ρ2); c, d: The corresponding cross sections of the boundary surface in the vertical ρ1ρ12 plane
(ρ1 = ρ2) (c) C0 = R1 = 0.0392219 (d) C0 = R4 = 0.0655514. The forbidden regions, where motion is
impossible, are shaded black

where

C ′
e(y1) = (

μ1y
2
1 + μ2

)
⎡

⎣2μ0

(
μ1

y1
+ μ2

)

+1

2

(
μ2
1

y1
+ μ2

2

)
+ 4μ1μ2

1

1 − y21

⎤

⎦
2

(34)

and ρ1 = y1ρ2.
Figure 4a, b shows two examples of such projections for a given μ0, μ1 and C0. (Recall

that there are only two independent mass ratios required since μ0 + 2(μ1 + μ2) = 1.) In
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Fig. 4a,C0 = R1, which is the critical minimumvalue at which the regions of real motion (the
tubes in Fig. 3) first become disconnected within the junction where the four tubes connect.
In Fig. 4b, C0 = R4, which is the critical value at which the three-dimensional regions of
real motion, become fully disconnected. (We discuss the values R1, . . . , R4 in more detail
in Sect. 7.)

Real motion can only take place within the four-tube structure, which has been projected
onto the white arms shown. For C0 �= 0, a forbidden region (black) exists at the origin,
which grows as C0 is increased to meet the forbidden region surrounding the exterior of the
arms. Orbits in the ρ2 << ρ1 arm are in the 24 hierarchy. Likewise, those in the ρ2 ≈ ρ1
arm are in either the 12 or 14 hierarchies. Orbits within the ρ1 << ρ2 arm are in the 13
hierarchy. The connectedness of the three arms in Fig. 4a, for C0 = 0.0392219, indicates
that it is possible to change from one hierarchical arrangement to another. Figure 4b gives
the projection for C0 = Ccrit = 0.0655514, a critical value, at which the regions of real
motion become disconnected. In Sect. 7, we give the derivation of this critical value Ccrit .
For C0 > Ccrit , the arms are completely disconnected. No movement is permitted between
different hierarchies. The system is therefore hierarchically stable.

6.2 Theminima of the boundary surface of real motion projected in�1�2 space

Theminima of the boundary surface also provide information on the three-dimensional shape
of the surface. Projection of the curves indicating where the minima are located in the ρ1ρ2
plane are useful in identifying when, as C0 is increased, forbidden regions first appear within
the boundary surface. Motion is still possible from one hierarchy to another but now this has
to avoid the forbidden region within the junction where the four tubes connect.

For example, Fig. 4c and d shows the cross section of the boundary surface in the vertical
ρ1ρ12 plane (ρ1 = ρ2) for the five-body equal mass case. These figures have the same values
of μ0, μ1 and C0, and correspond to, Fig. 4a, b, respectively. Orbits in the ρ12 ≈ 2ρ1 arm
(corresponding to the upper central tube) are in the 14 hierarchy. This arm has an upper
boundary of the line ρ12 = 2ρ1 corresponding to the 14 collision described in Sect. 4,
collision case (ii). Orbits in the ρ12 ≈ 0 arm (corresponding to the lower central tube) are
in the 12 hierarchy. The line ρ12 = 0 corresponds to the 12 collision described in Sect. 4,
collision case (i).

Figure 4c gives the cross section for C0 = R1 = 0.0392219. In three dimensions, real
motion is still possible by moving around the forbidden point visible in the two-dimensional
cross section. Figure 4d gives the cross section for C0 = R4 = 0.0655514. Both Fig. 4c,
d shows that regions of allowed motion (white) exist, forming the ρ12 ≈ 2ρ1 arm (upper
central tube) beyond the forbidden zone at the origin.

Steves and Roy (2001) considered the special case of the four-body equal-mass CSFBP,
with a zero central mass. For C0 values corresponding to the minimum for the boundary
surface, they showed that it was necessary to pass through a 13 or a 24 hierarchy (Fig. 3,
side tubes) in order to move between the double binary 14 and 12 hierarchies (Fig. 3, upper
central tube to the lower central tube).

For a given y1, y2, the minima of ρn with respect to x12 occur at x12 =
√
y21 + y22 . We

find the projection of the minima onto the ρ1ρ2 plane in the two cases. For Case (i), ρ1 ≥ ρ2,
Eq. (24) becomes

ρ1 = 1

2

√
Cm(y2)

μ1 + μ2y22

(
1 ±

√

1 − C0

Cm(y2)

)
, (35)
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where

Cm(y2) = (
μ1 + μ2y

2
2

)
⎡

⎣2μ0

(
μ1 + μ2

y2

)

+1

2

(
μ2
1 + μ2

2

y2

)
+ 4

μ1μ2√
1 + y22

⎤

⎦
2

. (36)

For Case (ii), ρ2 ≥ ρ1, equation (24) becomes

ρ2 = 1

2

√
C ′
m(y1)

μ1y21 + μ2

(
1 ±

√
1 − C0

C ′
m(y1)

)
, (37)

where

C ′
m(y1) = (

μ1y
2
1 + μ2

)
⎡

⎣2μ0

(
μ1

y1
+ μ2

)

+1

2

(
μ2
1

y1
+ μ2

2

)
+ 4

μ1μ2√
y21 + 1

⎤

⎦
2

. (38)

7 The Szebehely ladder and Szebehely constant

Through the projections in the ρ1ρ2 plane given by the maximum extensions and the minima
of the boundaries of real motion in ρ1ρ2ρ12 space, we can study the topology of the boundary
surfaces and thus gain knowledge on the hierarchical stability of the system. The topology
changes as C0 increases. The critical values of C0 at which the space becomes disconnected
therefore provide a stability criterion.

The value of ρn(y1, y2), for the maximum extensions and the minima projections, explic-
itly depends on the value of the appropriate C-function: Ce, C ′

e, Cm or C ′
m . The function

ρn has two real roots, a single repeated real root or two conjugate imaginary roots, if that
C-function is greater than, equal to or less than C0, respectively.

The quantities Ce(y2), C ′
e(y1),Cm(y2), C ′

m(y1) therefore give information on the point at
which the topology of the projections changes. The critical changes occur when the C-value
is equal to C0, the single repeated real root solution. For example, Ce can be evaluated for
the range of y2 from 0 to 1. (Recall that y2 is the gradient of a straight line through the origin
O in the ρ1ρ2 plane.) The minimum value of Ce(y2) = Cmin

e is the first value of C0, as
it is increased, where there is only one solution (ρ1, ρ2) to the maximum projection curve.
For C0 > Cmin

e , there are no solutions (ρ1, ρ2) and the projection becomes disconnected
indicating the presence of a stable system.

The minima of the four C-functions, each of which indicate a point of change in the
topology, can be thought of as the rungs of a ladder, that Steves and Roy (2001) call the
Szebehely ladder. The rungs of the ladder, R1 = Cmin

m , R2 = C ′min
m , R3 = Cmin

e and
R4 = C ′min

e , solely depend on the masses of the system. They are invariant under other
changes to the initial conditions, the angular momentum c, or energy H of the system.

Both y1 and y2 are between 0 and 1. Therefore, we may plot relations Ce(y2), C ′
e(y1),

Cm(y2), C ′
m(y1) in the same figure C against y. Figure 5 shows the curves of the four C-
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Fig. 5 Szebehely Ladder for μ0 = 0.1 μ1 = 0.15 and μ2 = 0.30

functions for the case μ0 = 0.1 μ1 = 0.15 and μ2 = 0.30. From the definitions of the
C-functions, in equations (31), (34), (36) and (38), we deduce that all the C-functions tend
to infinity as the y-value tends to zero and further both the ratio of Ce to Cm and the ratio of
C ′
e to C ′

m tend to one. Additionally, Ce and C ′
e tend to infinity, and their ratio tends to one,

as the y-value tends to one. Finally, both Cm and C ′
m tend to the value

(μ1 + μ2)

[
2μ0 (μ1 + μ2) + 1

2

(
μ2
1 + μ2

2

) + 2
√
2(μ1μ2)

]2
, (39)

as the y-value tends to one. This is 0.0336682 for the example (Fig. 5).
The rungs of the Szebehely ladder are formed by the minima of the four curves. The

system’s stability depends on the location of its Szebehely constant C0 with respect to these
rungs. Thus, when

1. C0 > R1, there is a region of forbiddenmotion near the origin within the boundary surface
for ρ1 ≥ ρ2. This partially blocks the junction between the four tubes.

2. C0 > R2, there is a region of forbiddenmotion near the origin within the boundary surface
for ρ2 ≥ ρ1. This partially blocks the junction between the four tubes.

3. C0 > R3, the arms in the projection of the maximum extensions for ρ1 ≥ ρ2 are discon-
nected and the 24 hierarchy is stable.

4. C0 > R4, the arms in the projection of the maximum extensions for ρ2 ≥ ρ1 are discon-
nected and the 13 hierarchy is stable.

When C0 > max(R3, R4), all arms are disconnected and the system is hierarchically stable.

1. If μ2 > μ1, then R4 > R3 > R2 > R1.
2. If μ1 > μ2, then R3 > R4 > R1 > R2.
3. If μ1 = μ2, then R2 = R1 and R3 = R4.
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Therefore the critical value of C0 at which the whole system becomes hierarchically stable
for all time is

Ccrit = max(R3, R4) =
{
R3 = Cmin

e if μ1 > μ2

R4 = C ′min
e if μ2 > μ1

. (40)

μ1 = μ2 is the special case of equal masses where C0 > Ccrit = R3 = R4 gives total
hierarchical stability at one critical point. Otherwise, hierarchical stability occurs in two
stages C0 > Ccrit1 = R3 and C0 > Ccrit2 = R4. If μ0 = 0, then we have the special case of
the CSFBP discussed by Steves and Roy (2001).

We now present several examples, for a range of mass ratios, to illustrate how rungs of the
Szebehely ladder can be computed solely fromμ0,μ1. Then using the value of the Szebehely
constant C0 for the system, which depends on the initial conditions, the hierarchical stability
of the system can be determined.

8 The stability of the CS5BP systems with a range of different mass
ratios

8.1 The equal mass CS5BP

The equal-mass CS5BP has μ0 = μ1 = μ2 = 0.2. In this case, there exist only two rungs
of the Szebehely ladder; since Cm = C ′

m and Ce = C ′
e, viz.

Cm(y) = 1

5

(
1 + y2

)
[
1

10

(
1 + 1

y

)
+ 4

25
√
1 + y2

]2

, (41)

Ce(y) = 1

5

(
1 + y2

)
[
1

10

(
1 + 1

y

)
+ 4

25
(
1 − y2

)
]2

, (42)

where 0 ≤ y ≤ 1.
The minimum values of Cm(y) and Ce(y) form the two rungs of the Szebehely Ladder.

The minimum values of Cm and Ce are R1 = 0.039222 and R4 = 0.065551, respectively.
R1 and R4 occur at y = 1 and y = 0.472, respectively.

Figure 4a shows the projection of the maximum extensions forC0 = R1. The phase space
remains connected but a small forbidden region exists near the origin. This forbidden region
grows as C0 is increased until at C0 = R4, at the highest rung of the ladder, the phase space
becomes disconnected (cf. Fig. 4b). The five-body equal-mass CS5BP is hierarchically stable
for values of C0 greater than R4 = 0.065551.

8.2 Four equal masses with a varying central mass�0

In this case there is only one independent mass ratio since, from (5), μ1 = μ2 = 1
4 (1− μ0).

Only two rungs of the Szebehely ladder exist as Cm = C ′
m and Ce = C ′

e. Thus,

Cm = μ1
(
1 + y2

)
[(

2μ0μ1 + μ2
1

2

) (
1 + 1

y

)
+ 4μ2

1√
1 + y2

]2

, (43)

Ce = μ1
(
1 + y2

)
[(

2μ0μ1 + μ2
1

2

) (
1 + 1

y

)
+ 4μ2

1(
1 − y2

)
]2

. (44)
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(a) (b)

Fig. 6 μ0 = 0.01, μ1 = μ2 = 0.2475: The projection of the boundary surface onto the ρ1ρ2 plane at (a)
C0 = R1 = 0.0295707 (b) C0 = R4 = 0.048036. The forbidden regions, where motion is impossible, are
shaded black

Figures 6 and 7 show the projections of the maximum extensions onto the ρ1ρ2 plane for
two typical cases:

1. A small central mass; μ0 = 0.01, μ1 = μ2 = 0.2475 (Fig. 6);
2. A large central mass; μ0 = 0.96, μ1 = μ2 = 0.01 (Fig. 7).

In each figure, the two values C0 = R1 and C0 = R4 have been selected.
For CS5BPs with a small central mass, the central arms ρ1 ≈ ρ2 are relatively broader

than the side arms. This suggests that such systems are most likely to be moving in double
binary hierarchies of type 12 and 14 (cf. Fig. 6).

In contrast, CS5BPs with large central bodies have relatively broader side arms (ρ1 ≈ 0
and ρ2 ≈ 0). This suggests that the single trinary hierarchies 13 and 24 will be dominant (cf.
Fig. 7).

To study the effect on the relative sizes of the arms of real motion, the fifth central body
(m0) is varied in mass from 0 to 1 while maintaining the other masses equal in size. Figure 8
shows the projections for C0 = 0 and for a range of μ0.

For μ0 = 0 to 0.2, i.e. a small central mass, the double binary hierarchies dominate,
with single trinary hierarchies more prevalent as μ0 increases beyond 0.2. At μ0 = 0.2,
i.e. the five-body equal-mass case, the areas of real motion are of relatively equal sizes
for the double binary and single trinary hierarchies, suggesting neither is dominant. When
comparing the area of real motion available forμ0 = 0 (the four-body equal-mass case), with
that of μ0 = 0.2 (the five-body equal-mass case), we see that the addition of a fifth body of
equal mass at the centre increases the area of real motion between single trinary and double
binary hierarchies. Thus, it most likely increases the chance of moving from one hierarchy
to another, and this makes the five-body equal mass system more hierarchically unstable, as
would be expected.

For μ0 = 0.2 to 1, i.e. a larger central mass, single trinary hierarchies dominate, with
double binary hierarchies becoming virtually non-existent for μ0 close to 1. If μ0 is close to
1, then the system could be considered as a star with four planets or else a planet with four
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(a) (b)

Fig. 7 μ0 = 0.96, μ1 = μ2 = 0.01: The projection of the boundary surface onto the ρ1ρ2 plane at (a)
C0 = R1 = 0.0000301 (b) C0 = R4 = 0.0000323. The forbidden regions, where motion is impossible, are
shaded black

Fig. 8 Projections of the
boundary surfaces onto the ρ1ρ2
plane for C0 = 0, μ1 = μ2 and a
range of μ0 from 0 to 0.96

satellites. In such situations, it is highly unlikely that the four small bodies will form two
binary pairs orbiting the central body.

The critical value of C0 at which the system becomes hierarchically stable for all time is
given by (40). The quantities R3 and R4 are purely functions of μ0 and μ1. For μ1 = μ2,
they are functions only of μ0. Figure 9 plots these critical values as a function of μ0. For
C0 > Ccrit(μ0), hierarchical stability is guaranteed. Figure 9 shows that Ccrit(μ0) has a
maximum of 0.065667 at μ0 = 0.183. Thus if C0 > 0.065667, all CS5BP’s with μ1 = μ2

will be hierarchically stable. The figure also shows that the four-body case of equal masses
(i.e. μ0 = 0) will always be hierarchically stable when C0 > 0.045.
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Fig. 9 Critical values of C0,
namely Ccrit , at which the CS5BP
becomes hierarchically stable as
a function of μ0, when μ1 = μ2

(a) (b)

Fig. 10 μ0 < μ1 < μ2, μ0 = 0.01, μ1 = 0.195, μ2 = 0.3. The projection of the boundary surface onto the
ρ1 − ρ2 plane at (a) C0 = R3 = 0.0439109 (b) C0 = R4 = 0.046941. The forbidden regions, where motion
is impossible, are shaded black

8.3 Non-equal masses, i.e.�0 �= �1 �= �2 �= �0

With μ0 �= μ1 �= μ2 �= μ0, we now have two independent mass ratios μ0, μ1, since
μ2 = 1

2 (1 − μ0) − μ1. We also have four separate rungs of the Szebehely ladder, i.e.
Cm �= C ′

m and Ce �= C ′
e, as illustrated in Fig. 5.

Figures 10 and 11 give two typical examples of projections for first μ0 < μ1 < μ2

(Fig. 10); and second μ2 < μ0 < μ1 (Fig. 11). In each figure, two values C0 = R3 and
C0 = R4 have been selected to show the two stages of increasing hierarchical stability. For
example, in Fig. 10, μ1 < μ2, therefore, when R3 < C0 < R4, the arm ρ2 ≈ 0 becomes
disconnected first and any system in a 24 hierarchywill be stable. If the system is in a different
hierarchy (12, 13, or 14), it is still free to change to any other hierarchy except for the 24
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(a) (b)

Fig. 11 μ2 < μ0 < μ1, μ1 = 0.3, μ2 = 0.1 and μ0 = 0.2. The projection of the boundary surface onto the
ρ1 − ρ2 plane at (a) C0 = R4 = 0.0501 (b) C0 = R3 = 0.0553. The forbidden regions, where motion is
impossible, are shaded black

hierarchy. See Fig. 10a. Once C0 > R4, all arms become disconnected and the system is
hierarchically stable for all hierarchical arrangements and for all time (cf. Fig. 10b).

Note that, as in Fig. 11, when μ1 > μ2 the arm ρ1 ≈ 0 becomes disconnected first.
Thus for R4 < C0 < R3, any system in a 13 hierarchy will be hierarchically stable. Once
C0 > R3, all arms become disconnected and the system is hierarchically stable for all time
(cf. Fig. 11b).

The quantity Ccrit , the critical value of C0 at which the whole system becomes stable, is
given by equation (40). This is a function of only μ0 and μ1. Figure 12 plots these critical
values as a function of μ0 and μ1. There is a symmetry due to the interchangeability of
μ1 and μ2. Figure 13 shows the cross section through this surface at the value μ0 = 0.2.
For C0 > Ccrit , hierarchical stability is guaranteed for all time. The maximum value of
Ccrit is approximately 0.065946 which occurs at the two symmetrical points (μ0, μ1) =
(0.184, 0.218) and (μ0, μ1) = (0.184, 0.190). Thus, if C0 > 0.065946, then all CS5BP,
regardless of their mass ratios, will be hierarchically stable. The Ccrit stability criterion was
verified numerically by Shoaib et al. (2008). Note that Fig. 12 shows that, as the central
mass μ0 increases towards 1, the critical value Ccrit reduces to 0, indicating that there will be
hierarchical stability for a greater range of systems of different C0,with a large central mass.

9 Conclusions

In this paper, we have investigated the hierarchical stability of the Caledonian Symmetric
Five-Body Problem (CS5BP). The analytical stability criterion derived for the five-body
system shows that the hierarchical stability depends solely on the Szebehely Constant, C0, a
function of the total energy and angular momentum of the system.

Sundman’s inequality is used to define a surface, in dimensionless coordinate space, that
confines regions of real motion. As C0 is increased the effect is to disconnect the regions of
real motion of systems with different hierarchical arrangements. This can be visualised in
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Fig. 12 Critical values of C0, namely Ccrit , at which the CS5BP becomes hierarchically stable as a function
of μ0 and μ1

projections onto two dimensions. In the special case of four equal masses, orbiting the central
mass (μ1 = μ2), total hierarchical stability occurs when C0 > Ccrit where Ccrit = R3 = R4

is one critical point. Otherwise, for non-equal pairs of masses orbiting the central mass, the
hierarchical stability occurs in two stages as the C0 of the system is increased. In the first
stage, C0 > Ccrit1 produces hierarchical stability for a single trinary. At the second stage,
C0 > Ccrit2, the whole system is hierarchically stable for all time, i.e. any CS5BP system
existing in a particular hierarchy cannot evolve into any other hierarchy.

The effect of adding a central body to the four-body symmetrical problem and increasing
its mass μ0 from 0 to 1 represents the change from the four-body equal-mass case (a stellar
cluster) to a large central body with four infinitesimal masses orbiting a central body (a
planetary system). The projections showing the regions of real motion indicate that, for a
small central mass (stellar cluster) double binary hierarchies dominate, and for a large central
mass (planetary system) single trinary hierarchies dominate. The addition of a fifth central
body of equal mass to the other four masses has the effect of increasing the projected area
of real motion between single trinary and double binary hierarchies near the origin. This
suggests that the chances of moving from one hierarchy to another have increased, making
the five-body equal-mass systemmore hierarchically unstable than the four-body equal-mass
system.

The critical value Ccrit , at which the system becomes hierarchically stable for all time,
depends only on the mass ratios μ0 and μ1 of the five-body system. The maximum value of
Ccrit across all mass ratios is 0.065946, indicating that, for C0 greater than this maxima, all
CS5BP, regardless of their mass ratios, will be hierarchically stable for all time. All CSFBP,
regardless of their mass ratios, will be hierarchically stable for all time if C0 > 0.045.
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Fig. 13 Critical values of C0, namely Ccrit , at which the CS5BP becomes hierarchically stable as a function
of μ1, when μ0 = 0.2

The analytical stability criterion based on the Szebehely Constant C0 has proven a pow-
erful tool in understanding the hierarchical evolution of the CS5BP and its subsystem the
CSFBP. The analysis provides not only information on the levels of energy and angular
momentum needed for hierarchical stability of the system for all time, but also information
on the dominant hierarchy types expected when hierarchies are able to evolve from one to
another.
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Table 1 Modified labelling of hierarchies

Original notation Current notation

12 Hierarchy (double binary (DB)) 12 Hierarchy (double binary (DB))

13 Hierarchy (double binary (DB)) 14 Hierarchy (double binary (DB))

14 Hierarchy (single binary (SB)) 13 Hierarchy (single trinary (ST))

23 Hierarchy (single binary (SB)) 24 Hierarchy (single trinary (ST))

A Difference of notation with Steves and Roy (2000, 2001) explained

1. Roy and Steves (2000) began numbering their CSFBP in numerical order 1234, thus the
symmetric pairs were (1) P1 and P4 and (2) P2 and P3.

In this current work, it was realised that when the four-body problem was generalised to
a higher number of bodies, mathematically it would be advantageous to label the bodies
so that the first body in a symmetric pair is numbered j where 1 ≤ j ≤ n, and the second
body in the pair is numbered n + j , where 2n is the total number of bodies in the system.
For the four- and five-body problems, this meant the symmetric pairs became: (1) P1
and P3 and (2) P2 and P4. Table 1 compares the original notation for the CSFBP (Roy
and Steves 2000; Steves and Roy 2001; Széll et al. 2004a, b, c) with the current notation
corresponding to the present paper.

2. For the CSFBP, Steves and Roy (2001) only require two different masses m and M ,
one for each pair of bodies. They, therefore, need only one mass ratio to describe the
whole system. Thus in the four-body symmetrical system, μ (the mass ratio) is defined as
μ = m/M . When more than four bodies are included in the problem, it is easier to use a
more general system of mass ratios. Thus, μi is chosen to be the ratio of the i th body to
the total mass of the system

∑
mi . Therefore, we have a scaling difference between the

Steves and Roy original notation and the present paper’s notation and

μ1 = μ

(2μ + 2)
μ2 = 1

(2μ + 2)
, (45)

where μ = m/M as defined by Steves and Roy (2001). Hence for μ = 1, i.e. the equal-
mass four-body problem, we have μ1 = 0.25, μ2 = 0.25 and μ0 = 0.

3. For the same reasons as above, we have a scaling difference for the Szebehely Constant
C0 for which we give the following conversion formula

CA = (2μ + 2)5 CS, (46)

where CA is the Szebehely Constant given by Steves and Roy and CS is the Szebehely
Constant given in the present paper.
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