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Cluster formation in binary fluids with competing short-range and long-range
interactions

Carlos A. Ferreiro-Rangel and M. B. Sweatman

School of Engineering, University of Edinburgh, Edinburgh, UK

ABSTRACT
The equilibrium phase behaviour of a model binary fluid is investigated through Monte Carlo
simulations and by developing a molecular thermodynamic model. Both fluid components interact
through a hard core with short-range attractions (SA), but one of the components exhibits an addi-
tional long-range repulsion (SA+LR).We find thatphasebehaviour for this system is controlledby the
cross-interaction between the two types of particles as well as their chemical potentials. For a weak
cross-interaction, the systemdisplaysbehaviour that is a compositeof thebehaviourof the individual
components, i.e. the SA component can display bulk vapour/liquid phase separation, while the SALR
component can display giant micelle-like clusters for a suitable combination of SA and LR interac-
tions. For a strong cross-interaction, qualitatively different behaviour is observed, with the resulting
clusters typically composed of amore equalmixture of SA and SALRparticles.Moreover, thesemixed
clusters can exist even when the SA component by itself would be undersaturated or supercritical,
and/orwhen the SALR component by itself would not formgiant clusters. These insights should help
to identify the mechanisms for clustering in experimental systems where giant equilibrium clusters
are observed.
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1. Introduction

This work investigates the equilibrium phase behaviour
of binary fluids where one component exhibits short-
range attractive and long-range repulsive (SALR) inter-
actions. Such fluids are suitable for modelling the forma-
tion of giant clusters in solutions of biomolecules [1,2],
and other soft matter systems where solutes can become
charged in solution (i.e. by proton exchange with the sol-
vent). In these systems, attractive interactions between
solutes can arise through a variety of mechanisms, such
as hydrophobicity, hydrogen bonding (or specific bind-
ing interactions) or a depletion interaction (induced

CONTACT M. B. Sweatman martin.sweatman@ed.ac.uk School of Engineering, University of Edinburgh, Edinburgh EH9 3FJ, UK

by solvated polymer, for example), whereas long-range
repulsion is generally the result of screened coulom-
bic charges. Of course, the formation of a cluster phase
in amphiphilic solutions is well known and understood
[3]. But the SALR mechanism for cluster formation is
relatively novel, and reports of giant clusters observed
in small molecule solutions, such as glycine [4–6] and
urea [7], suggest this SALR mechanism might be more
universal.

The prototypical SALR model is a one-component
fluid representing effective interactions between solute
molecules where the solvent has been ’integrated-out’.
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At low concentrations, the behaviour of the system can
be similar to that of amphiphilic solutions as long as
the short-ranged attractions and long-ranged repulsion
forces are nearly balanced. Thus, a critical cluster con-
centration (CCC) exists above which a cluster fluid phase
is present, and at higher densities, a series of modulated
phases are thought to occur. The picture is perhaps less
clear for strongly attractive and very short-range interac-
tions that lead to irreversible bond formation on appli-
cable timescales. When this occurs, phenomena such as
kinetic arrest and gelation obscure any emerging equilib-
rium properties. These issues can be present in colloidal
and protein solutions (i.e. small clusters and kinetic arrest
are commonplace).

A variety of single-component SALR systems have
been studied using theoretical models as well as simula-
tions. For example, Archer and co-workers [8,9] investi-
gated modulated phases at intermediate densities using
mean-field density functional theory and Monte Carlo
simulations. More recently, Sweatman and co-workers
[10,11] studied low-density SALR phase behaviour using
a novel micelle-like thermodynamic model and Monte
Carlo simulations. They found micelle-like behaviour
as well as a first-order phase transition from a cluster
vapour to a condensed cluster phase, driven by depletion
of the surrounding SALR vapour, and proposed a simple
equation for the average cluster size in these systems.

While the single-component SALR model remains
very useful for revealing fundamental aspects of cluster-
ing behaviour, many real systems involve more than one
solute. This is most obviously the case in biological sys-
tems, but it is also true in small molecule solutions in
which giant clusters are observed. In each of these cases,
all species of the main solute are observed (e.g. all the
different ionic forms of an amino acid in aqueous solu-
tion), as well as, presumably, low levels of impurity. For
this reason, it is important to investigate the clustering
behaviour of solute mixtures where at least one of the
solute components interacts like an SALR particle.

In this work, we aim to explore the equilibrium phase
behaviour of binary mixtures where one of the compo-
nents exhibits an SALR potential and the other interacts
through simple attractive forces. We extend the thermo-
dynamic model developed for the pure SALR fluid [10]
to this binary case. A full derivation and explanation for
the pure SALR case is provided in that earlier work, and
therefore only brief details are provided here.

In the next section, we lay out the basics of the
binary fluid model under study. In Section 3, Gibbs-
ensemble Monte Carlo simulations are described that
reveal the underlying phase behaviour of this system.
For more detailed insights, the thermodynamic model
for this binary system is developed in Section 4. The

thermodynamic model results are discussed in Section 5,
and conclusions are drawn in Section 6.

2. Binary fluid model

The system of interest in this work comprises a binary
mixture of (a) spherical particles interacting through a
hard core of diameter d plus a short-range attraction
(component 1, by itself a simple SA fluid) and (b) par-
ticles identical to (a) except they also display long-range
repulsion interactions (component 2, by itself a SALR
fluid). For separations r>d, convenient expressions for
the direct and cross-interactions are provided by Yukawa
potentials,

φ11(r) = φSA11(r), (1)

φ22(r) = φSA22(r)+ φLR22(r), (2)

φ12(r) = φSA12(r), (3)

where,

βφSAij(r) = − Aij

(r/d)
exp

[
−zij

( r
d

− 1
)]

, (4)

βφLR22(r) = Ar

(r/d)
exp

[
−zr

( r
d

− 1
)]

, (5)

with β = 1/(kBT) and i,j=1, 2. The parameters Aij are
all positive and determine the strength of attractive inter-
actions relative to kBT, while Ar likewise determines the
strength of the repulsive interaction between particles of
component 2. Parameters zij are all positive and deter-
mine the inverse decay length of the attractive interac-
tions, while zr (with min(zij) > zr > 0) determines the
inverse decay length for the repulsive interaction. For
convenience, we fix the following parameters: all zij =
1.00, zr = 0.25 and Ar = 0.50, knowing they are ade-
quate for modeling the SALR fluid interactions. There-
fore, there are five independent parameters that remain to
be defined: the attraction strengths (Aij) and the ’config-
urational’ contribution to the chemical potential for each
component (μi).

In the remainder of this work, specific choices are
made for A11 and A22, and the resulting fluid phase
behaviour is investigated for a range of values of the cross
interaction strength A12, and the chemical potentials μ1,
and μ2. All parameters are expressed in their reduced
form, with an energy scale of β and length scale of d.

3. Monte Carlo simulations

Gibbs-ensemble Monte Carlo simulations were carried
out with 4100 SA particles in a total volume yielding an
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Figure 1. Gibbs-ensembleMC simulation snapshots for SA/SALRbinarymixtures having different cross-interaction strengths (see online
version for colours).

average density of ρb1 = 0.1907;, between the coexist-
ing vapour and liquid densities in the absence of com-
ponent 2, but with different number of SALR particles
n2 = 300, 600, 900 and 1200. The attractive interactions
of components 1 and 2 are fixed to A11 = 0.5 and A22 =
1.75, with inverse decay lengths of z11 = z22 = 1.00,
while the repulsive part of the SALR fluid is fixed toAr =
0.50 with zr = 0.25. Four different scenarios were sim-
ulated with increasing cross-interaction between com-
ponents 1 and 2, so that A12 = 0.00, 0.25, 0.50 and 0.75
while keeping z12 = 1.00. The cutoff for the interactions
is 15 times the hard sphere diameter used.

To enable efficient sampling of both particle and clus-
ter degrees of freedom, a dual Monte Carlo step size
was employed with maximum step sizes of 0.10 and 1.50
hard spheres, respectively (chosen randomly), and sim-
ple cluster moves were also used. These cluster moves
consist of (a) randomly selecting a particle and (b) mov-
ing all particles within a specified range of this particle
along the same vector. Accepting or rejecting the moves
depend on the usual Boltzmann factor, although, to
ensure microscopic reversibility, cluster moves are auto-
matically rejected if the reverse move would involve a
different group of particles.

Figure 1 shows snapshots from these Gibbs-ensemble
simulations at equilibrium. Only four types of phase

are observed, with their existence dependent on the
component densities and the strength of the cross-
interaction; uniform vapour, uniform liquid, vapour with
clusters and liquid with clusters. When A12 = 0, we
find the following sequence of equilibrium behaviour
as the concentration of SALR particles (component 2)
increases: (i) vapour/liquid coexistence, (ii) vapour with
clusters coexisting with uniform liquid, (iii) vapour with
clusters coexisting with liquid with clusters. This shows
the SALR clusters preferentially partition into the vapour
phase when A12 = 0. When A12 = 0.25, the sequence is
similar except the SALR clusters appear to preferentially
partition into the liquid phase, i.e. the liquid phase with
clusters has become more stable. The same sequence is
observed for A12 = 0.50, except in this case, the CCC
has increased, i.e. the uniform liquid has become more
stable. When A12 = 0.75, we see qualitatively different
behaviour in that the liquid no longer exhibits giant clus-
ters at all, and giant SALR clusters apparent in the vapour
phase are mixed and swollen with component 1 (the SA
component).

A tentative generic phase diagram for low SALR par-
ticle concentrations is sketched in Figure 2 based on
these Gibbs-ensemble results. The usual vapour–liquid
coexistence occurs when SALR particles are absent if (as
is the case here) the SA system by itself is subcritical.
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Figure 2. Tentative phase diagram for the binary SA/SALR mix-
ture based on Gibbs MC simulations (see online version for
colours).

Red lines denote the critical cluster chemical potential
(CCμ) of SALR particles in the vapour and liquid phases,
assuming that the SA and LR interactions are balanced
such that they lead to SALR clusters in the absence of
component 1. The curved arrows indicate that the slopes
of these critical cluster lines will depend on A12. Like-
wise, the horizontal arrow indicates the position of the
liquid CCμ will vary with A12. For low and high val-
ues of A12, the Gibbs-ensemble simulation results sug-
gest it will initiate to the right of the end of the vapour
CCμ. But for intermediate values of A12, it can initi-
ate to the left of the vapour CCμ. For sufficiently high
values of A12, it appears from the simulations that clus-
ters are no longer stable in the liquid phase. Of course,
being a sketch, we have used straight lines, but we fully
expect all the lines in this diagram to be curved in
practice.

While these simulations provide an indication of
the equilibrium behaviour for the mixtures studied,
a detailed exploration of the phase diagram quickly
becomes time consuming. For every choice of the set
of model parameters, many simulations are required
to adequately explore the phase space in the cluster
region and provide relevant averages for cluster sizes
and compositions. Given that each simulation can take
many hours, this situation is not ideal. Particularly
as we wish to be able to make fast predictions of
phase behaviour to assist in the design of nanoparti-
cles synthesised via this giant SALR cluster route. Just
as importantly, we cannot guarantee that these simula-
tions are truly at equilibrium. This would require Monte
Carlo moves that swapped clusters between simulation
boxes.

We therefore developed a thermodynamic model,
described next, for fast prediction of phase behaviour
and to confirm the tentative phase behaviour shown in
Figure 2.

4. Thermodynamic model

The thermodynamic model of Sweatman et al. [10],
which was developed to investigate the cluster fluid phase
of the one-component SALR fluid, is now extended to
this binary mixture. The resulting model can be viewed
as a kind of density functional micelle theory. An advan-
tage of this particular approach is its basis in statistical
thermodynamics and density functional theory, i.e. it
relates the properties of constituent particles (the interac-
tionmodel orHamiltonian) to resulting phase behaviour,
rather than taking emergent properties, such as the sur-
face tension, as input to the model, as is more common
in theories of clustering and micellization. The model
is designed to treat each of the four phases seen in the
simulations in Section 3.

As the one-component SALR thermodynamic model
was described in detail in an earlier work [10], here we
present only a summary of the binary model used in this
work, stressing the key modifications for its extension to
binary systems. The approach is based on the ’capillary
model’ approximation and treats the cluster fluid phase
as a disordered collection of spherical liquid-like droplets
of volume Vc = πd3c/6 each, dispersed within a back-
ground vapour. Each cluster of particles (or droplet), with
diameter dc = 2Rc, is taken to be identical with uniform
body densities ρL1 = nL1/Vc and ρL2 = nL2/Vc for the
two components, respectively, where nL1 and nL2 denote
the number of particles of type 1 and 2, respectively,
within each cluster. The cluster density is ρc = nc/V ,
where nc is the number of clusters within a system of total
volume V, and the corresponding average background
fluid densities are ρv1 = nv1/V and ρv2 = nv2/V , where
nv1 and nv2 are the number of particles of each type in
the background fluid.

Although, in general, clusters are polydisperse in their
size and shape, they are statistically identical, and so in
this model, they are chosen to be spherical andmonodis-
perse. Therefore, the profile of a cluster centred at RRR
is,

Pc(r − Rr − Rr − R) = �(Rc − |r − Rr − Rr − R|), (6)

where � is the Heaviside step-function. Thus, the ’capil-
lary’ model defines a discontinuous interface between the
clusters and the background fluid. The volume fractionψ
of the clusters is,

ψ = ρcVc = ρb1 − ρv1

ρL1
= ρb2 − ρv2

ρL2
, (7)

where ρb1 and ρb2 are the total, or bulk, density of parti-
cles of type 1 and 2, respectively.

Unlike for the original derivation, where the model
was presented using theCanonical ensemble (i.e. in terms
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of the Helmholtz free energy), for the binary mixture
case, here we rewrite it in terms of the Grand-potential
density, ωc,

ωc = fc −
∑
i
ρbiμi, (8)

where μi is the chemical potential of component i. Fol-
lowing the original approach by Sweatman et al. [10], the
free energy contributions are split into two contributions:
energetic contributions coming from pair interactions,
and entropic contributions obtained by treating parti-
cles and clusters as hard spheres. The Helmholtz free
energy (fc) can also be partitioned into ’self ’ and ’mixture’
contributions,

fc = uc − Tsc = fself + fmix = fself + umix − Tsmix. (9)

In this equation, fself describes the free energy density
of particles within clusters, while fmix contains contribu-
tions to the free energy density of the mixture from both
the background fluid and the clusters. Simple expressions
for fself and fmix are now developed in terms of the basic
parameters describing particle interactions. At all times,
we only consider the configurational contribution to the
free energy, as the contribution frommomentum (involv-
ing the thermal de Broglie wavelength) is unimportant
for equilibrium behaviour.

4.1. Self-free energy

The self-free energy of the clusters is composed of two
terms,

fself = ρc(Uself − TSself ). (10)

In Equation (10), Uself is the interaction energy between
particles in a cluster, i.e. its self-energy, and Sself is the
entropy of the particles within a cluster. To estimateUself ,
we assume configurational correlations between particles
within a cluster are similar to those within a bulk liquid.
So the interaction energy of particles within a cluster is
given by,

Uself = 2π
∑
ij=1,2

ρLiρLj

∫
dr r2φij(r)gLij(r)Pdc(r), (11)

where gLij(r) is the radial distribution function (RDF)
between particles i and j in a bulk liquid, and Pdc(r) is
related to the form factor of the clusters and represents
the geometric convolution of two cluster distributions.
The liquid RDFs are approximated by those of a hard

sphere fluid,

gL11(r) = gL12(r) = gL22(r) = g(2)HS (r; ρLtot ; d), (12)

where the Percus–Yevick (PY) theory [12] for hard
spheres at the combined liquid density ρLtot = ρL1 + ρL2
is used.

The self-entropy is approximated as,

Sself = Vcsmix
HS (ρL1, ρL2, d)+ AcsA(ρg1, ρg2, ρL1, ρL2, d),

(13)
where smix

HS (ρL1, ρL2, d) is the entropy density of a uniform
hard sphere fluid mixture of components with densities
ρL1 and ρL2, respectively, and Ac is the cluster interfacial
area.

Unlike in the original model derivation [10], the
model now also takes into account the entropic contri-
bution of the primary particles at the interface between
the background fluid and the clusters, represented by the
right-most term in Equation (13). Assuming a planar
step-like density profile at the interface, the interfacial
entropy density is

sA(ρv1, ρv2, ρL1, ρL2, d)

=
∫ d

−d
dx(f exHSA(x)− f exHSg/2 − f exHSL/2). (14)

The excess free energy density for the gas–liquid inter-
face f exHSA is calculated using the Rosenfeld et al. [13]
fundamentalmeasure functional (FMF) for hard spheres,

βf exHSA(x) = −η0(x)ln(1 − η3(x))

+ η1(x)η2(x)− ηv1v1v1(x) · ηv2v2v2(x)
(1 − η3(x))

+
(

1
8π

)

1/3η2(x)3 − η2(x)(ηv2v2v2(x) · ηv2v2v2(x))
(1 − η3(x))2

(15)

and the uniform background fluid, f exHSg , and cluster liq-
uid, f exHSL , hard sphere excess free energy densities are
calculated from the same in the limit of a bulk fluid
mixture.

In Equation (15), there are only three independent
parameters, η2(x), η3(x) and ηv2v2v2(x), which are calculated
in the planar limit through,

ηα(x) =
∑
j

∫
ρj(x′)w(α)j (x − x′) dx′, (16)

where the independent parameters are calculated using
the following weight functions of the Rosenfeld func-
tional,

w(3)i (rrr) = �(|rrr| − di/2), (17)
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w(2)i (rrr) = δ(|rrr| − di/2), (18)

w(v2(v2(v2)i (rrr) = rrr
|rrr|δ(|rrr| − di/2). (19)

The remaining scalar weight functions are proportional
to w(2)i , and the remaining vector weight function is
collinear with w(v2v2v2)i as indicated by Rosenfeld [13],

w(0)i (rrr) = w(2)i (rrr)
πd2i

, (20)

w(1)i (rrr) = w(2)i (rrr)
2πdi

, (21)

w(v1v1v1)i (rrr) = w(v2v2v2)i (rrr)
2πdi

. (22)

Finally, the local densities for each component, ρj(x), on
either side of the interface take on the values inside the
cluster for x ≤ 0, and in the background fluid for x>0.

4.2. Mixing free energy

We deal with the contribution of the energy density to
themixture free energy first, which is given exactly by the
usual energy equation [14],

umix =
∑
i,j=1,2

2πρviρvj
∫

dr r2φij(r)gvij(r)

+
∑
i=1,2

4πρviρc
∫

dr r2φic(r)gic(r)

+ 2πρ2c

∫
dr r2φcc(r)gcc(r), (23)

where gvij(r) is the RDF between particles i and j in the
background fluid, gic(r) is the RDF between component
i in the background fluid phase and cluster centres, and
gcc(r) is the cluster center-cluster center RDF. Also, φic(r)
is the effective pair-potential between component i in the
background fluid phase and cluster centers, and φcc(r) is
the effective pair-potential between cluster centers.

Convenient approximations for all these functioare
made as follows [10]

gvij(r) = gHS(r; ρgtot , d), (24)

gic(r) = �(r − (rc + 2d))exp(−βφic(r)), (25)

gcc(r) = �(r − (2rc + 2d))exp(−βφcc(r)), (26)

where the combined vapour density is ρgtot = (ρv1 +
ρv2)/(1 − ψ). Here it is assumed that no particle can

approach a cluster (that it is not part of) closer than 2d,
since then it would be considered part of that cluster.
These cluster-cluster and cluster-vapour g(r) approxima-
tions are adequate for this work. In any case, more accu-
rate approximations are not obviously available, since
integral equation approaches to this problem of giant
SALR clustering typically fail in the low-density region
of the SALR phase diagram in which we are interested.

The effective interactions are computed in k-space as,

φic(k) =
∑
j=1,2

ρLjφij(k)Pc(k), (27)

φcc(k) =
∑
ij=1,2

ρLiρLjφij(k)Pdc(k). (28)

The entropy of the coarse-grained system, due to these
effective interactions, is approximated in terms of a hard
sphere mixture with significant negative non-additivity
(see Sweatman et al. [10] for a discussion on this). As
there is no satisfactory existing expression for the entropy
of such a system, the background fluid and cluster excess
entropies are decoupled,

−Tsmix = (1 − ψ)
∑
i=1,2

fid(ρvi/(1 − ψ))+ fid(ρc)

+ (1 − ψ)f exHS(ρgtot , d)+ f exHS(ρc, d
eff
c )

+ ρcScom, (29)

where deffc is the effective cluster diameter calculated via
the Barker-Henderson prescription [14],

deffc = dc + 2d +
∫ ∞

dc+2d
dr[1 − exp(−βφcc(r))], (30)

which also defines an effective packing fraction of clus-
ters,

ψeff = π

6
ρcd

eff
c . (31)

Again, we use Rosenfeld’s FMF [13], which reduces to the
PY compressibility result [14] for a bulk fluid, to calculate
the excess hard-sphere free energy density.

The ideal gas contribution in Equation (29), omitting
terms involving the thermal de Broglie wavelength of the
primary particles, is simply,

fid(ρ) = kBTρ(ln(ρ)− 1). (32)

The term Scom in Equation (29) is a centre-of-mass cor-
rection, which ensures the coarse-grained clusters have
a precisely defined position (again, see Sweatman et al.
[10] for a discussion on this point) and can be seen as
contributing to the entropy of formation for the clusters.
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For this contribution, we used an appropriately modified
version of our previously derived expression [10] for the
pure SALR system,

Scom = −kB
[
5
2
ln(ρc)− 3

2
ln
(
ρLψ − ψ

Vc

)
+ α

×ln

(
1
6ψ

(
1000
π

)0.5
)]

. (33)

In Equation (33), choosing α = 1 gives the same expres-
sion derived originally for the pure SALR fluid in earlier
work. For the binary system in this work, we found for
low cluster body densities (ρLtot ≈ 0.2) that the forma-
tion of unrealistically small clusters with less than four
particles was sometimes favoured due to an under esti-
mation of the cluster formation entropy (i.e. the Scom
contribution) which cannot adequately compensate the
ideal-gas cluster contribution f id(ρc), which favours the
formation of clusters. This problem arises because of an
error in the derivation of this term in [10]. Indeed, it is in
principle impossible to specify the formation free energy
of a cluster precisely without first specifying how a clus-
ter is defined, i.e. specifying the rules that govern when
a particle is considered part of a cluster. As we do not
specify those rules here, we cannot in principle exactly
formulate an expression for Scom. Viewed another way,
the final term on the right hand side of (33) is arbitrary,
and only determined precisely when a rule governing
the definition of a cluster is imposed. As we do not do
this here, we must regard this final term as an adjustable
parameter. Thus, we adjust α to ensure that the smallest
cluster is comprised of at least four particles. The param-
eter that satisfies this condition, and therefore the one
used in the remainder of this work is α = 0.05198; (see
Figure 3).

This completely defines the thermodynamicmodel for
the cluster fluid phases of the binary mixture. For a uni-
form fluid without clusters, the free energy is expressed
simply as,

fb(ρb1, ρb2) = ub − Tsb

= 2π
∑
ij=1,2

ρbiρbj

∫ ∞

d
dr r2φij(r)gHS(r; d, ρbtot)

+
∑
i=i,2

fid(ρbi)+ f exHS(ρbtot , d), (34)

where ρbtot = ρb1 + ρb2.

4.3. Cluster solidmodel

For sufficiently high SALR chemical potentials, a cluster
solid phase is expected [10]. A thermodynamic model

Figure 3. δf = fid(ρc)+ ρcTScom versus the total number of par-
ticles in the cluster M = nL1 + nL2 for the low liquid density
ρLtot = 0.2. Red line using Scom with α = 1, and blue line with
α = 0.05198;. The point at M= 4 when δf = 0 is marked with a
vertical dashed line (see online version for colours).

of the cluster solid phase was not included in the ear-
lier one-component model; instead a criterion based on
the effective packing fraction of clusters,ψeff , was used to
locate this phase boundary [10]. In the present work, we
instead prefer to maintain a thermodynamicapproach,
and thus develop a thermodynamic model of the cluster
solid phase.

First we introduce the relative packing fraction, z,
which is related to the effective packing fraction and is
calculated as follows,

z =
ρcd3eff√

2
= 6
π

√
2
ψeff (35)

with 0< z<1.
When considering the crystal packing of solid spheres,

there are two main staking arrangements that are
favoured: face-centred-cubic (fcc), and hexagonal-
closed-packed (hcp), since they both provide the most
efficient packing (occupying about 74% of the space).
These two structures have been the focus of many stud-
ies, with Sion-Chuon andHuse [15] reporting that the fcc
stacking has the highest entropy.We therefore proceed to
model the cluster solid phase of our binary system as an
fcc solid.

In order to account for the cluster solid phase, the
thermodynamic model requires twomodifications. First,
the cluster-cluster RDF in Equation (26), gcc(r), which
is suitable for a cluster fluid, must be replaced with a
suitable RDF for the fcc cluster solid. For computational
efficiency, we use an empirical fit to the hard sphere fcc
crystal RDFdeveloped byChoi andRee [16] valid for sep-
arations up to r/d < 3.3 provided 0.700< z<0.985. For
larger separations, we take gcc = 1.
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Second, the entropy density of clusters, which for the
cluster fluid phase is given by the term f exHS(ρc, d

eff
c ) in

Equation (29), must be modified to account for the fcc
crystal phase. We use an empirical equation proposed by
Speedy [17],

�S(z)
Nk

= −3ln
[

z
1 − z

]
+
(
1 + ab

c

)
ln(z)

+ a
(
1 − b

c

)
ln(z − c)+ So (36)

with the fcc parameters being: a=0.5921, b=0.7072,
c=0.601 and So = −2.531. This expression provides the
excess entropy per hard sphere at a packing fraction z and
is valid for 0.643< z<0.990. To employ this equation of
state for our fcc phase of clusters, we use the relative pack-
ing fraction (Equation 35) and multiply by ρc to obtain
a reduced excess free energy density. As our main inter-
est here is to locate the cluster fluid to cluster solid phase
transition, we are not interested in cluster solid phases
with high packing fractions and so impose the constraint
z<0.9.

4.4. Solving themodel

Minimisation of the grand-potential density with respect
to the primary variables (i.e. the vapour densities ρvi,
the cluster body densities ρLi, the cluster size dc and
the cluster volume fraction ψ at fixed chemical poten-
tials (μi) with a defined set of interaction strengths Aij is
performed via a local down-hill search algorithm. Phase
space is searched on a square grid of chemical potentials.
For each grid point, we compare the grand free energy
densities calculated for uniform fluid, cluster fluid and
cluster solid, taking the lowest free energy as the equilib-
rium phase. We impose the constraint M>4 consistent
with Figure 3.

In what follows we present our results in terms of
reduced fugacities rather than chemical potentials, where
the reduced fugacity f∗i can be readily obtained from the
configurational part of the chemical potential as f∗i =
[πd3hs/6] e

βμi . This reduced fugacity equals the packing
fraction of hard spheres in the dilute limit.

5. Results and discussion

5.1. Thermodynamicmodel validation

While the thermodynamic model was developed for
binary mixtures, it should also reproduce the phase
behaviour of the limiting cases: i.e. the pure SA fluid and
the pure SALR fluid. The model is forced to mimic the
respective pure fluid by setting the chemical potential of
the other component to an arbitrarily low number.

The SA fluid phase diagram is presented in Figure 4.
When the attractive parameter is very low (equiva-
lent to high temperatures), the fluid shows supercritical
behaviour. AsA11 increases (equivalent to decreasing the
temperature in the system), the fluid reaches a critical
point at about A11 = 0.33 eventually showing the typi-
cal first-order gas–liquid phase transition with fugacity,
as expected for this system (Figure 4(b)).

Results for the predicted phase diagram of a pure
SALR fluid withAr = 0.50 and zr = 0.50, identical to the
parameters used originally by Sweatman et al. [10], are
presented in Figure 5, in which the cluster-fluid phase is
shown in red and the cluster solid phase in blue. These
results were obtained by sweeping A22 in 0.025 intervals,
and μ22 in 4 · 10−3 intervals, and they agree well with
those presented by Sweatman et al. [10].

Figure 5(b) shows results specifically for A22 = 1.85
studied by changing the chemical potential in small
intervals of 5 · 10−4. As expected, increasing fugacity
leads to the appearance of a cluster-fluid phase. Further

Figure 4. Phase diagram for the pure SA fluid with z11 = 1, over a range of attractive strengths, 0.0 < A11 < 0.9. (a) Phase map show-
ing vapour and liquid regions, (b) 3D plot clearly showing the first-order vapour–liquid transition. The location of the critical point is
highlighted in black,while the location of the sub-critical phase change atA11 = 0.50 is highlighted in red (see online version for colours).
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Figure 5. Phase diagram for the pure SALR fluid with z22 = 1, Ar = 0.50, and zr = 0.50. (a) Phase map when 1.5 < A22 < 2.1, showing
the uniform phase (salmon), the cluster fluid phase (red), and the cluster solid phase (blue). (b) Transitions (black dotted lines) observed
at A22 = 1.85: uniform phase (orange) to cluster fluid (red), to cluster solid (blue). (see online version for colours)

Figure 6. Phase diagram for the pure SALR fluid with z22 = 1, Ar = 0.50, and zr = 0.25. (a) Phase map when 1.70 < A22 < 2.10, show-
ing the uniform phase (salmon), the cluster fluid phase (red), and the cluster solid phase (blue). (b) Phase transitions (black dotted lines)
observed at A22 = 1.86: uniform phase (orange) to cluster fluid (red), to cluster solid (blue). (see online version for colours)

increasing fugacity results in increased volume fractions
until, at high fugacities (i.e. high SALR concentrations),
there is evidence of a discontinuous cluster-fluid to clus-
ter solid phase transition.

We then proceed to map the phase diagram for an
SALR fluid with parameters identical to those used
in the Monte Carlo simulations shown in Section 3
and which form the focus of this present work, i.e.
with a longer-ranged repulsive interaction, zr = 0.25.
Figure 6(a) shows results obtained by incrementing A22
in intervals of 0.02 and μ22 in intervals of 5 · 10−2.
Although the cluster-fluid phase now exists over a wider
range of fugacities, these correspond to a smaller range
of bulk densities. As in the previous SALR system, at
high fugacities, there is a discontinuous phase change
from cluster-fluid to cluster solid, but now there is also
a first-order phase transition between the uniform and
cluster-fluid phases.

5.2. Binarymixtures

From here on the discussion will focus on SA+SALR
binary mixtures. In particular, two different cases will

Table 1. Parameters for the binary mixtures studied.

Mixture A11 A22 Ar zij zr

I 0.00 1.85 0.50 1.00 0.25
II 0.50 1.85 0.50 1.00 0.25

Note: The cross-interaction parameter is within the range 0.00 < A12 < 1.00.

be discussed: supercritical SA fluid (represented in an
ideal sense using hard spheres, A11 = 0.00), and a sub-
critical SA fluid (A11 = 0.50). A summary of the relevant
parameters in both cases is presented in Table 1. We
then investigate the effect of changing the strength of the
cross-interaction strength (A12) in each case.

Unlike the pure fluid case, model solutions for binary
systems require more computational effort, as each
specific grid point on the f∗1 , f∗2 phase diagram involves
a complex multi-variable global minimisation, which is
susceptible to the initial conditions chosen. For this rea-
son, our final phase diagrams for the binary mixtures
are found by comparing four different sets of solutions
obtained by sweeping the phase space up/down on each
chemical potential. Phase diagrams are conveniently
viewed in terms of the cluster volume fraction, φ.
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Figure 7. Mixture I with parameters given in Table 1 and A12 = 0.00. (a) Volume fraction phase diagram, where the green line highlights
f∗1 = 0.29 (i.e. μ1 = −0.60). (b) Cluster size. (c) Total phase density (blue) and compositions (red) when f∗1 = 0.29. Background fluids
represented by dotted lines, while cluster phases represented by solid lines. A dashed black linemarks the appearance of the cluster fluid
phase, while the dashed green line marks the cluster-fluid to cluster solid transition (see online version for colours).

5.3. Mixture I

We initially consider this mixture (parameters in Table 1)
for the case where A12 = 0.00, modelling an SALR fluid
containing inert impurities. The phase diagram obtained
(Figure 7(a)) shows that for very low SA fugacities the
uniform to cluster-fluid phase transition approaches the
pure SALR fluid case. However, despite the absence of a
cross-interaction, as the SA concentration increases (i.e.
increased fugacity) Figure 7(a) shows higher SALR fugac-
ities are needed to achieve the cluster-fluid phase, i.e.
the presence of an inert impurity delays clustering, but
with no significant effect on the cluster size or the clus-
ter volume fraction at the transition to a cluster solid
(Figure 7(b)).

Figure 7(c) shows the density and composition of
background fluid and clusters for a fixed SA fugacity f∗1 =
0.29 (i.e. μ11 = −0.60). The background fluid is formed
mainly of SA particles at low concentration, while clus-
ters are almost pure SALRwith liquid-like density. As the
SALR fugacity is increased, we see first-order phase tran-
sitions from the uniform fluid to the cluster fluid, and
finally to the cluster solid.

Themodel shows some uncertainty in the cluster solid
region, where it often alternates between two solutions,
one depicting slightly smaller (by 4%), denser (by 5%)
clusters with lower volume fractions (by 8%). This is
likely an artefact of our model for the cluster solid phase,
which assumes monodisperse clusters, and/or due to the
solution method which is not guaranteed to find the
global minimum of the free energy.

5.3.1. Mixture I: increasingA12
Mixture I as presented so far may be relevant for systems
with inert impurities. However, real mixtures will always
have some degree of cross-interaction (A12), the nature
of which plays a key role in the phase behaviour of the
system.

As the cross-interaction strength is increased, the
behaviour remains similar to that presented in Figure 7,
except for the composition of the background fluid,
which presents a higher amount of SALR particles at
lower overall density.

Figure 8 shows the result of increasing the cross-
interaction to A12 = 1.00. Qualitatively different be-
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Figure 8. Mixture Iwith parameters given in Table 1 andA12 = 1.00. (a) Volume fractionphasediagram, green lines highlight f∗1 = 0.009
and 0.039 (i.e. μ1 = −4.10 and −2.60). (b) Cluster size. (c) and (d) Total phase density (blue) and compositions (red) when f∗1 = 0.009
and 0.039. Uniform/background fluids represented by dotted lines, while cluster phases represented by smooth lines. A dashed black line
marks the appearance of the heterogeneous cluster phase, while the dashed green line marks the cluster-fluid to cluster solid transition
(see online version for colours).

haviour is now observed. The transition to the clus-
ter fluid phase is no longer delayed by the SA fluid,
rather it is promoted by it: notice the uniform to cluster-
fluid transition line moves towards the left (i.e. towards
smaller SALR fugacities) as the SA fugacity increases
(Figure 8(a)). Both the background phase and clusters
have a significant proportion of SA and SALR parti-
cles, due to the increased SA–SALR inter-particle affinity.
In turn, this causes an increase in the cluster size rela-
tive to weaker cross-interactions, which then leads to a
reduction in the density of clusters.

5.4. Mixture II

In this case, the SA fluid is subcritical, thus allowing
us to explore the effect of a second component with
strong attractive interactions when mixed with the SALR
fluid of interest. As before, we first study the case with-
out cross-interactions A12 = 0.00. Comparing Figures 7
and 9, although we see the same sequence of transitions,
from uniform fluid to cluster-fluid to cluster solid, there
is a noticeable change in phase behaviour, with respect to
Mixture I, when the background fluid condenses.

For low SA fugacities, the uniform phase being a low-
density vapour (Figure 9(c)), the system behaves almost
as a pure SALR fluid, as expected, except with some SA
particles in the background fluid. However, at high SA
fluid fugacities, when the background phase is liquid-like
(Figure 9(d)), the SALR fugacity required for clustering
increases almost linearlywith increasing SA fugacity (and
hencewith SAdensity). In this regime, clusters are almost
pure SALR, while the background fluid is nearly pure SA.

5.4.1. Mixture II: increasingA12
Slightly increasing the cross-interaction (A12 < 0.5)
shows no significant change in the shape of the phase dia-
gram, but with the noticeable difference that the critical
cluster fugacity (CCf ) at the liquid-like and vapour-like
homogeneous phases no longer intersect. This is because
the CCf in the liquid-like background phase, though still
almost linearly dependent on μ1, has been pushed back
to higher SALR fugacities, indicating in this case, the
cluster fluid is less stable when the background fluid is
liquid-like.

As the cross-interaction increases, i.e. to A12 = 1.00
(Figure 10(a)), the transition from vapour to liquid
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Figure 9. Mixture II with parameters given in Table 1 and A12 = 0.00. (a) Volume fraction phase diagram where green lines show f∗1 =
0.006 and 0.039 (i.e. μ1 = −4.40 and −2.60). (b) Cluster size. (c) and (d) Total phase density (blue) and compositions (red) when f∗1 =
0.006 and 0.039. Uniform/background fluids represented by dotted lines, while cluster phases represented by smooth lines. A dashed
black line marks the appearance of the heterogeneous cluster phase, while the dashed green line marks the cluster-fluid to cluster solid
transition (see online version for colours).

occurs at smaller SA fluid fugacities and for sufficiently
low f∗1 , the system behaves almost like a pure SALR fluid.
But as the SA fugacity increases, clustering occurs at
lower SALR fugacities, just as for the case with a super-
critical SA component (Mixture I). These clusters have
diameter similar to the earlier cases, with dc < 10.

But, in the region of the phase diagram where the
background fluid condenses, where the fugacity of the
SA fluid is sufficiently high, the model generates some
unexpected results. Under these conditions, the model
predicts the formation of giant clusters (dc > 30) with a
low body density, not very different to the background
phase. In other words, a very weakly modulated phase is
formed. It is not clear if this is the correct behaviour or an
artefact of the thermodynamicmodel. This can be further
investigated by the use of amean-field non-local DFT, but
this is beyond the scope of the present work.

6. Conclusions

Wedeveloped a thermodynamicmodel to study the equi-
librium phase behaviour of a model SA+SALR binary

fluid. Our multiscale DFT approach generates results
consistent with those obtained fromGibbs-ensembleMC
simulations for the same model mixture.

The DFT results support the MC simulation results
in qualitative terms, and therefore the phase diagram
sketched in Figure 2 appears to show the correct trends,
even for the supercritical case where there is no bulk
vapour–liquid phase transition. In particular, we find the
cross-interaction largely determines phase behaviour. Its
strength has a direct effect on the direction of the uni-
form fluid–cluster fluid phase boundary, which for low
cross-interaction strengths moves towards higher SALR
fugacities as the SA fugacity increases, while for high
cross-interaction strengths moves towards lower SALR
fugacities as the SA fugacity is increased. In other words,
for low cross-interaction strengths, the presence of the
SA component tends to delay cluster formation, while the
opposite is true for strong cross-interactions.

Moreover, giant clusters can form readily, even if they
would not form for the SALR component alone, provided
the SA component concentration is sufficiently high
and the cross-interaction is sufficiently strong. The SA
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Figure 10. Mixture II with parameters given in Table 1 andA12 = 1.00. (a) Volume fraction phase diagram, the green line highlights f∗1 =
0.0007; (i.e.μ1 = −6.60). (b) Cluster size. (c)Total phase density (blue) and compositions (red) when f∗1 = 0.0007;. Uniform/background
fluids represented by dotted lines, while cluster phases represented by smooth lines. A dashed black line marks the appearance of the
heterogeneous cluster phase,while the dashedgreen linemarks the cluster-fluid to cluster solid transition (see online version for colours).

composition within the clusters is significantly increased
with increasing cross-interaction strength, with clusters
swollen by the absorption of SA particles.

A useful way to consider the effect of the SA com-
ponent is in terms of an additional effective interaction
between SALR particles. If the cross-interaction is only
weakly attractive, then the SA component induces a weak
effective repulsion between SALR particles. But if the
cross-interaction is strongly attractive, then SA particles
induce an effective attraction between SALR particles. In
each case, the strength of the effect is sensitive to the
concentration (or chemical potential) of SA particles. We
expect it might be possible to formalise this observa-
tion by integrating-out the SA component to generate an
effective one-component SALR system.

This observation is very important for understand-
ing the appearance of these kinds of giant cluster in
experiments. Even though charged solutes might, by
themselves, not form clusters under experimental con-
ditions, when in the presence of an uncharged solute,
which could be a different species of the same solute,

clusters can still appear if the cross-interaction between
them is strong enough. Essentially, it can happen that
the uncharged species tends to ’glue’ the charged species
together. A giant cluster will still form if the screened
coulomb repulsion of the charged species is sufficiently
strong, such that formation of the bulk liquid phase is
frustrated.

To our knowledge, this is the first theoretical approach
capable of investigating both a disordered cluster phase
(the cluster fluid) and a modulated phase (the cluster
solid). It can also investigate the effect of the addition
of a simple fluid component (i.e. the SA particles) on
the clustering behaviour of an SALR system. By enabling
the consistent treatment of a cluster solid phase on the
same footing as the cluster fluid, we observe a first-order
cluster fluid to solid transition for sufficiently high par-
ticle concentrations (or chemical potentials). In some
cases, the model predicts the emergence of a very weakly
modulated phase with very long wavelength fluctuations.
It is not clear at this stage whether this is an artefact,
and therefore a failure, of the model, or whether this
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behaviour is correctly predicted. Investigation of this
feature can be tackled with a standard non-local DFT
treatment.

More generally, the model opens the door to investi-
gating giant cluster formation in experiments with mul-
tiple solute components, exemplified by soft matter and
biological systems.
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