6,102 research outputs found
Uma análise de soft systems methodology e sua utilização para melhoria do processo de desenvolvimento de cultivares em uma instituição de pesquisa agropecuária.
O objetivo desse artigo é apresentar algumas contribuições para enriquecer a reflexão sobre a Soft Systems Methodology (SSM) e contribuir para a sua prática em situações diversas do mundo organizacional. A SSM é explorada em um caso prático de aplicação na Embrapa Milho e Sorgo, com o objetivo de propor melhorias para o Processo de Desenvolvimento de Cultivares da empresa. O foco é direcionado para as características metodológicas da intervenção, enfatizando a adaptação feita ao processo de aplicação da SSM para se ajustar às contingências da situação. Ao final, avalia-se que a utilização da metodologia na forma flexível apresentada pode contribuir para o alcance de bons resultados para a organização
The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics
We prove that the distributional limit of the normalised number of returns to
small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical
systems is compound Poisson. The returns to small balls around a fixed point in
the phase space correspond to the occurrence of rare events, or exceedances of
high thresholds, so that there is a connection between the laws of Return Times
Statistics and Extreme Value Laws. The fact that the fixed point in the phase
space is a repelling periodic point implies that there is a tendency for the
exceedances to appear in clusters whose average sizes is given by the Extremal
Index, which depends on the expansion of the system at the periodic point.
We recall that for generic points, the exceedances, in the limit, are
singular and occur at Poisson times. However, around periodic points, the
picture is different: the respective point processes of exceedances converge to
a compound Poisson process, so instead of single exceedances, we have entire
clusters of exceedances occurring at Poisson times with a geometric
distribution ruling its multiplicity.
The systems to which our results apply include: general piecewise expanding
maps of the interval (Rychlik maps), maps with indifferent fixed points
(Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic
Population Synthesis in the Blue IV: Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations
[Abridged] We present new model predictions for 16 Lick absorption line
indices from Hdelta through Fe5335, and UBV colors for single stellar
populations (SPs) with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from
-1.3 to +0.3, and variable abundance ratios. We develop a method to estimate
mean ages and abundances of Fe, C, N, Mg, and Ca that explores the sensitivity
of the various indices to those parameters. When applied to high-S/N Galactic
cluster data, the models match the clusters' elemental abundances and ages with
high precision. Analyzing stacked SDSS spectra of early-type galaxies brighter
than Lstar, we find mean luminosity-weighted ages of the order of ~ 8 Gyr and
iron abundances slightly below solar. Abundance ratios, [X/Fe], are higher than
solar, and correlate positively with galaxy luminosity. Nitrogen is the element
whose abundance correlates the most strongly with luminosity, which seems to
indicate secondary enrichment. This result may impose a lower limit of 50-200
Myr to the time-scale of star formation in early-type galaxies. Unlike in the
case of clusters, in galaxies bluer Balmer lines yield younger ages than Hbeta.
This age discrepancy is stronger for lower luminosity galaxies. We examine four
scenarios to explain this trend. The most likely is the presence of small
amounts of a young/intermediate-age SP component. Two-component models provide
a better match to the data when the mass fraction of the young component is a
few %. This result implies that star formation has been extended in early-type
galaxies, and more so in less massive galaxies, lending support to the
``downsizing'' scenario. It also implies that SP synthesis models are capable
of constraining not only the mean ages of SPs in galaxies, but also their age
spread.Comment: To appear in the Astrophysical Journal Supplement Series. 55 Pages,
using emulateapj5.sty. Full version, containing all (enlarged) figures can be
found at http://www.astro.virginia.edu/~rps7v/Models/ms.pdf . A number of
useful tables in the Appendix can be obtained in advance of publication by
request to the autho
An unusual acute myeloid leukemia associated with hyper IgE: another case of AML‐M5c?
Haematologica. 2001 Feb;86(2):216-7.
An unusual acute myeloid leukemia associated with hyper IgE: another case of AML-M5c?
Lima M, Orfão A, Coutinho J, Ferreira G, Freitas I, Silvestre F, Justiça B.
PMID: 11224498 [PubMed - indexed for MEDLINE
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
Post-hoc model-agnostic interpretation methods such as partial dependence
plots can be employed to interpret complex machine learning models. While these
interpretation methods can be applied regardless of model complexity, they can
produce misleading and verbose results if the model is too complex, especially
w.r.t. feature interactions. To quantify the complexity of arbitrary machine
learning models, we propose model-agnostic complexity measures based on
functional decomposition: number of features used, interaction strength and
main effect complexity. We show that post-hoc interpretation of models that
minimize the three measures is more reliable and compact. Furthermore, we
demonstrate the application of these measures in a multi-objective optimization
approach which simultaneously minimizes loss and complexity
Spectroscopic ages and metallicities of stellar populations: validation of full spectrum fitting
Fitting whole spectra at intermediate spectral resolution (R = 1000 -- 3000),
to derive physical properties of stellar populations, appears as an optimized
alternative to methods based on spectrophotometric indices: it uses all the
redundant information contained in the signal. This paper addresses the
validation of the method and it investigates the quality of the population
models together with the reliability of the fitting procedures. We are using
two algorithms: STECKMAP, a non-parametric regularized program and NBURSTS a
parametric non-linear minimization. We compare three spectral synthesis models
for single stellar populations: Pegase-HR, Galaxev (BC03) and Vazdekis/Miles,
and we analyse spectra of Galactic clusters whose populations are known from
studies of color-magnitude diagrams (CMD) and spectroscopy of individual stars.
We find that: (1) The quality of the models critically depends on the stellar
library they use. Pegase-HR and Vazdekis/Miles are consistent, while the
comparison between Pegase-HR and BC03 shows some systematics reflecting the
limitations of the stellar library (STELIB) used to generate the latter models;
(2) The two fitting programs are consistent; (3) For globular clusters and M67
spectra, the method restitutes metallicities in agreement with spectroscopy of
stars within 0.14 dex; (4) The spectroscopic ages are very sensitive to the
presence of a blue horizontal branch (BHB) or of blue stragglers. A BHB
morphology results in a young SSP-equivalent age. Fitting a free amount of blue
stars in addition to the SSP model to mimic the BHB improves and stabilizes the
fit and restores ages in agreement with CMDs studies. This method is
potentially able to disentangle age or BHB effects in extragalactic clusters.Comment: accepted in MNRAS; Full version available at
http://www-obs.univ-lyon1.fr/labo/perso/prugniel/mina/koleva.pd
Star-planet interaction and its impact on the stellar rotation
The stellar rotation has an essential role in modifying the structure of the
star and, therefore, the way these different interplays arise. On the other
hand, changes in orbits impact the star's rotation and its evolution. The
evolution of the star's rotation accounts for the angular momentum exchange
with the planet and follows the effects of the internal transport of angular
momentum and metallicity. Several models in the literature have aimed to find a
theoretical way to study these interactions between the planet's orbital
evolution and the star's rotation. Our work is a promising attempt to
investigate these interactions from a model based on a new statistical
approach. To this end, we propose a ``tidal interaction index'' that carries
all the parameters of the star-planet system that can affect the transport of
angular momentum and, consequently, the evolution of stellar rotation. This
index is similar to the ``magnetic braking index'' whose most successful value
equals 3, which expresses the seminal Skumunich law. Our model is computed for
masses of the host star less than the Kraft limit for three orbital-rotation
period regimes and the semi-major axis less than 1 AU. We consider planets with
masses between 0.4M and 20M with orbital periods between
0.3 and 225 days. We show that the tidal index segregated by stellar mass
without wind magnetic braking during the main-sequence phase is strongly
anti-correlated with planetary mass. Finally, we conclude that in cases where
planets retain less than 84\% of the total angular momentum within the system,
the magnetic braking mechanism proves to be more effective than tidal
interactions, irrespective of whether the planets' angular momentum surpasses
that of the host star.Comment: 21 pages, 2 tables, submitted to Icaru
Quantifying the Drivers of Star Formation on Galactic Scales. I. The Small Magellanic Cloud
We use the star formation history of the Small Magellanic Cloud (SMC) to
place quantitative limits on the effect of tidal interactions and gas infall on
the star formation and chemical enrichment history of the SMC. The coincident
timing of two recent (< 4 Gyr) increases in the star formation rate and
SMC/Milky Way(MW) pericenter passages suggests that global star formation in
the SMC is driven at least in part by tidal forces due to the MW. The Large
Magellanic Cloud (LMC) is the other potential driver of star formation, but is
only near the SMC during the most recent burst. The poorly constrained LMC-SMC
orbit is our principal uncertainty. To explore the correspondence between
bursts and MW pericenter passages further, we model star formation in the SMC
using a combination of continuous and tidally-triggered star formation. The
behavior of the tidally-triggered mode is a strong inverse function of the
SMC-MW separation (preferred behavior ~ r^-5, resulting in a factor of ~100
difference in the rate of tidally-triggered star formation at pericenter and
apocenter). Despite the success of these closed-box evolutionary models in
reproducing the recent SMC star formation history and current chemical
abundance, they have some systematic shortcomings that are remedied by
postulating that a sizable infall event (~ 50% of the total gas mass) occured
about 4 Gyr ago. Regardless of whether this infall event is included, the
fraction of stars in the SMC that formed via a tidally triggered mode is > 10%
and could be as large as 70%.Comment: Accepted for publication in Ap
- …