4,149 research outputs found

    Microfield Dynamics of Black Holes

    Full text link
    The microcanonical treatment of black holes as opposed to the canonical formulation is reviewed and some major differences are displayed. In particular the decay rates are compared in the two different pictures.Comment: 22 pages, 4 figures, Revtex, Minor change in forma

    Ghost Busting: PT-Symmetric Interpretation of the Lee Model

    Full text link
    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g^2, the square of the renormalized coupling constant, above which g_0^2, the square of the unrenormalized coupling constant, is negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative. This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed exactly in the V/N-theta sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g^2.Comment: 20 pages, 9 figure

    Theoretical survey of tidal-charged black holes at the LHC

    Full text link
    We analyse a family of brane-world black holes which solve the effective four-dimensional Einstein equations for a wide range of parameters related to the unknown bulk/brane physics. We first constrain the parameters using known experimental bounds and, for the allowed cases, perform a numerical analysis of their time evolution, which includes accretion through the Earth. The study is aimed at predicting the typical behavior one can expect if such black holes were produced at the LHC. Most notably, we find that, under no circumstances, would the black holes reach the (hazardous) regime of Bondi accretion. Nonetheless, the possibility remains that black holes live long enough to escape from the accelerator (and even from the Earth's gravitational field) and result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the accepted version in JHE

    Automated quantitative analysis of single and double label autoradiographs

    Get PDF
    A method for the analysis of silver grain content in both single and double label autoradiographs is presented. The total grain area is calculated by counting the number of pixels at which the recorded light intensity in transmission dark field illumination exceeds a selected threshold. The calibration tests included autoradiographs with low (3H- thymidin) and high (3H-desoxyuridin) silver grain density. The results are proportional to the customary visual grain count. For the range of visibly countable grain densities in single labeled specimens, the correlation coefficient between the computed values and the visual grain counts is better than 0.96. In the first emulsion of the two emulsion layer autoradiographs of double labeled specimens (3H-14C- thymidin) the correlation coefficient is 0.919 and 0.906. The method provides a statistical correction for the background grains not due to the isotope. The possibility to record 14C tracks by shifting the focus through the second emulsion of the double labeled specimens is also demonstrated. The reported technique is essentially independent of size, shape and density of the grains

    Simulation of underground gravity gradients from stochastic seismic fields

    Full text link
    We present results obtained from a finite-element simulation of seismic displacement fields and of gravity gradients generated by those fields. The displacement field is constructed by a plane wave model with a 3D isotropic stochastic field and a 2D fundamental Rayleigh field. The plane wave model provides an accurate representation of stationary fields from distant sources. Underground gravity gradients are calculated as acceleration of a free test mass inside a cavity. The results are discussed in the context of gravity-gradient noise subtraction in third generation gravitational-wave detectors. Error analysis with respect to the density of the simulated grid leads to a derivation of an improved seismometer placement inside a 3D array which would be used in practice to monitor the seismic field.Comment: 24 pages, 12 figure

    Spring Meadow Management Practices: What’s a Rancher to do?

    Get PDF
    • Subirrigated meadows are a valuable forage resource to ranching operations in the Nebraska Sandhills, being used for both hay production and livestock grazing. • The water table of these meadows is within one meter of the soil surface during the growing season. • In some years, wet conditions hinder meadow utilization, resulting in a buildup of standing dead and litter plant material which can lower forage production. • Investigate if burning and mowing are effective strategies to remove dead plant material from meadows • Determine if burning or mowing interact with grazing to influence end of season forage production Burning or mowing effectively removes dead plant material from meadows with no later loss in forage production. Burning and mowing do not interact with grazing to influence later forage production. Spring grazing acted independently to significantly lower end of season forage production. Conclusions • Ranchers can use burning or mowing to effectively remove dead plant material from subirrigated meadows in the Nebraska Sandhills with no later losses in forage production (Fig.1 & Fig.2). • On the other hand, spring grazing reduces end of season forage production (Fig.3). Therefore, caution should be used with spring grazing if a rancher’s goal is to maximize hay yields from meadow forage

    Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves

    Full text link
    The quantum noise of the light field is a fundamental noise source in interferometric gravitational wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called Standard-Quantum-Limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyze the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO600 detector with present design parameters will benefit from frequency dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO600 will still be dominated by shot-noise and improved by a factor of 10^{6dB/20dB}~2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6x10^{-23} above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency dependent squeezing by introducing an additional optical component to GEO600s signal-recycling cavity.Comment: Presentation at AMALDI Conference 2003 in Pis
    • …
    corecore