97 research outputs found
Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste
A citizen science project found that the greenhouse camel cricket (Diestrammena asynamora) is common in North American homes. Public response was to wonder “what good are they anyway?” and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical, and biofuel industries. We screened gut bacteria of greenhouse camel crickets and another household insect, a hide beetle (Dermestes maculatus) for the ability to grow on and degrade lignocellulose components as well as the lignocellulose-derived industrial waste product black liquor. From three greenhouse camel crickets and three hide beetles, 14 bacterial strains were identified capable of growth on lignocellulosic components, including lignin. Cedecea lapagei was selected for further study due to growth on most lignocellulose components. The C. lapagei secretome was identified using LC/MS/MS analysis. This work demonstrates a novel source of lignocellulose-degrading bacteria and introduces an effective workflow to identify bacterial enzymes for transforming industrial waste into value-added products. More generally, our research suggests the value of ecologically-guided discovery of novel organisms
Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks
Phosphorylation is an important post-translational modification that is involved in regulating many signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of cancer. Phosphoproteomic methods have been developed to study regulation of signaling pathways; however, due to the low stoichiometry of phosphorylation, understanding these pathways is still a challenge. In this study, we have developed a multi-dimensional method incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with tandem IMAC-TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, suggesting that both enrichment methods are necessary to capture the full complement of kinase substrates. Biological functions that were over-represented at each PDGF stimulation time point, together with the phosphorylation dynamics of several phosphopeptides containing known kinase phosphorylation sites illustrate the feasibility of this approach in quantitative phosphoproteomic studies
A Functional Proteomic Method for Biomarker Discovery
The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer
- …