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Abstract

Phosphorylation is an important post-translational modification that is involved in regulating many 

signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 

3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of 

cancer. Phosphoproteomic methods have been developed to study regulation of signaling 

pathways; however, due to the low stoichiometry of phosphorylation, understanding these 

pathways is still a challenge. In this study, we have developed a multi-dimensional method 

incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with 

tandem IMAC-TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We 

applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique 

phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic 

kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, 

suggesting that both enrichment methods are necessary to capture the full complement of kinase 

substrates. Biological functions that were over-represented at each PDGF stimulation time point, 

together with the phosphorylation dynamics of several phosphopeptides containing known kinase 

phosphorylation sites illustrate the feasibility of this approach in quantitative phosphoproteomic 

studies.
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1. Introduction

Protein phosphorylation is among the most widespread post-translational modification 

(PTM) affecting almost every cellular process, including signal transduction pathways that 

are involved in cell proliferation, survival and differentiation. Understanding how these 

signaling pathways are controlled is important since misregulation contributes to the 

progression of cancer [1–3]. Traditionally, the phosphorylation dynamics of proteins 

involved in these signal transduction pathways have been elucidated using quantitative 

immunoblotting and other antibody-based methods [4–9]. More recently, global 

phosphoproteomic studies using LC/MS/MS have been implemented to study pathway 

regulation [10,11] and have advantages over quantitative immunoblotting such as the ability 

to multiplex and independence from the use of poorly characterized antibodies or those with 

limited specificity. However, challenges for LC/MS/MS studies including optimization of 

phosphopeptide enrichment protocols still remain.

Several phosphopeptide enrichment methods have been described which first use a liquid 

chromatography method to fractionate peptides, such as strong cation exchange (SCX) 

[12,13], strong anion exchange (SAX) [14], hydrophilic interaction chromatography 

(HILIC) [15], basic reversed-phase [16], or electrostatic repulsion-hydrophilic interaction 

chromatography (ERLIC) [17]. This fractionation is then followed by a phosphopeptide 

enrichment step [18–22]. Even though modifications to previous methods [23,24] or 

antibody-based phosphopeptide enrichment methods [25,26] have been developed, 

immobilized metal ion affinity chromatography (IMAC) [27] or TiO2 [28] affinity 

enrichment are still the most widely used in phosphoproteomic analysis. With IMAC, a 

positively charged metal cation, such as Fe3+, Zr4+ or Ga3+, chelated to a solid-phase 

support noncovalently binds to a negatively charged phosphate group at low pH. While non-

specific binding is minimized by washing with a low pH solution prior to phosphopeptide 

elution, non-specific binding of acidic peptides hinders this enrichment process. TiO2 is a 

type of metal oxide affinity chromatography that has been shown to enrich for 

phosphopeptides more efficiently and with better selectivity than IMAC. This is 

accomplished by using various organic acids, such as 2,5-dihydroxybenzoic acid (DHB) and 

glycolic acid, to block binding of acidic peptides, leading to an increase in phosphopeptide 

specificity [28]. Differences in phosphopeptide populations enriched by IMAC and TiO2 

have been observed, especially with regards to the number of phosphorylation sites per 

peptide. IMAC enriches for multiply phosphorylated peptides more efficiently than TiO2, 

while TiO2 enriches for a higher proportion of mono-phosphorylated peptides [29,30]. 

Additionally, it has been argued that using IMAC results in under-representation of 

basophilic kinase substrates, which could lead to biases in the data and an unbalanced 

portrayal of the phosphoproteome [24]. The analytical merit of implementing both of these 
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enrichment methods, either individually or sequentially, to increase the number and variety 

of identified phosphopeptides has been demonstrated [29–33].

Previously we reported a method for phosphopeptide enrichment incorporating ERLIC 

fractionation with IMAC [34]. Using this as a basis, we optimized a multi-dimensional 

method using ERLIC fractionation coupled with a tandem IMAC and TiO2 enrichment 

approach in order to take advantage of characteristics of both of these phosphopeptide 

enrichment strategies. The method was applied to PDGF responsive NIH 3T3 cells over a 

120 min time course, followed by LC/MS/MS analysis using a data-dependent CID/ETD 

decision tree (DT) method. We demonstrated the capability of this approach to enrich for a 

wide variety of phosphopeptides pertaining to both basophilic and acidophilic kinase 

substrate motifs when compared to other methods evaluated in this study. Furthermore, the 

analysis of biological functions that were over-represented at each time point, as well as the 

phosphorylation dynamics of several phosphopeptides illustrated the feasibility of our 

method for use in future quantitative studies.

2. Materials and Methods

2.1 Materials

All tissue culture reagents were purchased from Invitrogen (Life Technologies, 

www.lifetechnologies.com). Human recombinant PDGF-BB was purchased from Peprotech 

(www.peprotech.com). NIH 3T3 mouse fibroblasts were obtained from American Type 

Culture Collection (www.atcc.org). Acetonitrile (HPLC grade) and formic acid (ACS 

reagent grade) were from Sigma-Aldrich (www.sigmaaldrich.com). Acetone was purchased 

from Thermo Fisher Scientific (www.thermofisher.com). Ammonium bicarbonate and 

guanidinium chloride were from Fluka (www.sigmaaldrich.com). Water was distilled and 

purified using a High-Q 103S water purification system (www.high-q.com). All other 

reagents and chemicals were purchased from Sigma-Aldrich-Fluka unless otherwise stated.

2.2 Cell Culture and Lysis

NIH 3T3 fibroblasts were cultured at 37°C with 5% CO2 in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum, 2 mM l-glutamine, and the antibiotics 

penicillin (100 units/ml) and streptomycin sulfate (100 µg/ml). Dishes to be processed on the 

same day were plated with equal numbers of cells and allowed to reach 90% confluency. 

Cells were serum-starved for 3 h prior to no stimulation or 300 pM PDGF stimulation for 15 

or 120 min. Cells were harvested and lysed as previously described [4]. A 5-fold volume of 

ice-cold acetone was added to each sample, vortexed, and then incubated at −20°C 

overnight. After centrifugation, the supernatant was discarded and the dried protein 

precipitate was dissolved in 50 mM ammonium bicarbonate (pH 8.2) containing 8 M urea. 

The total protein concentration was determined by the BCA assay (Pierce, 

www.piercenet.com).

2.3 Protein Digestion

Equal amounts of protein from each sample were reduced with 5 mM DTT at 56°C for 30 

min and alkylated with 15 mM iodoacetamide in the dark at room temperature for 1 h. The 
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samples were diluted 1:8 with 50 mM ammonium bicarbonate and digested with sequencing 

grade trypsin (Promega, www.promega.com) at a 1:100 trypsin:protein ratio overnight at 

37°C. Peptides were desalted using a Grace Prevail C18 solid-phase extraction cartridge, 

and the solvent was evaporated via vacuum centrifugation. Peptides were stored at −80°C 

until further processing.

2.4 ERLIC Fractionation

Each ERLIC separation was performed on an Agilent 1100 series HPLC system using a 4.6 

× 200 mm, 5 µm particle size, 300A pore size PolyWAX LP column (PolyLC, Inc; 

www.polylc.com), as we previously described [34] with slight modifications. Briefly, the 

mobile phase consisted of (A) 20 mM ammonium formate, pH 2.2/70% acetonitrile (ACN) 

and (B) 300 mM ammonium formate, pH 2.2/20% ACN. After injection, an isocratic flow of 

15 min at 100% A was followed by a linear gradient from 0–50% B over 20 min and a linear 

gradient of 50–100% B over 5 min at a flow rate of 0.75 ml/min. Fractions were collected 

every minute and then combined into five total fractions based on chromatographic peak 

intensities measured at 280 nm using a diode array detector. Each sample was dried under 

vacuum centrifugation and stored at −20°C until phosphopeptide enrichment.

2.5 Phosphopeptide Enrichment

The procedure for IMAC (Fe-IMAC) was as we previously described [34], with a few 

modifications. Briefly, nitriloacetic acid (NTA) resin (Life Technologies, 

www.lifetechnologies.com/) charged with 100 mM FeCl3 was packed into a gel loading 

pipet tip made in-house containing a frit, and the resin was washed twice with 100 µl of 2% 

acetic acid. ERLIC fractionated peptides were resolubilized in 2% acetic acid, loaded onto 

the IMAC column, and washed twice with 100 µl of 2% acetic acid. The flow through and 

washes were collected and dried using vacuum centrifugation. A more stringent wash was 

performed twice with 100 µl of 74/25/1 100 mM NaCl/ACN/acetic acid (v/v/v), followed by 

a 100 µl wash with only water. Retained peptides were eluted with 100 µl of 5% NH4OH, 

then immediately acidified to pH 3 with formic acid. The eluted peptides were dried using 

vacuum centrifugation, and resuspended in 0.1% formic acid for LC/MS/MS analysis. This 

fraction is referred to as the “IMAC fraction”.

The IMAC flow through and washes were subjected to TiO2 enrichment using the Protea 

TiO2 SpinTips Sample Prep Kit (proteabio.com) following manufacturer’s instructions. 

Briefly, 4 mg of TiO2 material was used for each sample and was washed two times with 

100 µl of wash solution 1. Peptides were loaded on the TiO2 column and washed two times 

with 100 µl of wash solution 1, followed by two more washes with 100 µl of wash solution 

2. Retained peptides were eluted with the elution solution. The eluted peptides from TiO2 

were acidified to pH 3 with formic acid, dried using vacuum centrifugation, and resuspended 

in 0.1% formic acid for LC/MS/MS analysis. This fraction is referred to as the “IMAC-TiO2 

fraction”. The entire sample preparation workflow is illustrated in Figure 1.

2.6 LC/MS/MS Data Acquisition

LC/MS/MS analyses were performed on an Easy nLC 1000 ultra-pressure liquid 

chromatograph coupled to an ETD equipped LTQ Orbitrap Elite mass spectrometer (Thermo 
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Scientific, www.thermoscientific.com). Samples were injected onto a PepMap C18, 5 µm, 

trapping column (Thermo Scientific) then separated by in-line gradient elution onto a New 

Objective (www.newobjective.com) Self-Pack PicoFrit column (75 µm id × 15 cm) packed 

in-house with 1.7 µm BEH C18 stationary phase (Waters Corporation, www.waters.com). 

The linear gradient for separation consisted of 5–40% mobile phase B over 60 min at a 300 

nl/min flow rate, where mobile phase A was 0.1% formic acid/2% ACN in water and mobile 

phase B consisted of 0.1% formic acid in ACN. The Orbitrap Elite was operated in data-

dependent decision tree mode [35] where the 15 most intense precursors were selected for 

subsequent fragmentation using optimal settings for each activation technique (illustrated in 

Supplementary Figure S1). Resolution for the precursor scan (m/z 400–2000) was set to 

60,000 at m/z 400 with a target value of 1×106 ions. The MS/MS scans were acquired in the 

linear ion trap with a target value of 5000. The normalized collision energy was set to 35% 

for CID. For ETD, reaction time was set to 50 ms and supplemental activation using CID 

was enabled. The signal intensity threshold for triggering an MS/MS event was set to 1000. 

For internal mass calibration, the ion of polycyclodimethylsiloxane with m/z 445.120025 

was used as the lock mass [36]. Monoisotopic precursor selection was enabled, and 

precursors with unknown charge or a charge state of 1 were excluded.

2.7 Data Analysis

Raw data files of the IMAC and IMAC-TiO2 fractions were processed using Proteome 

Discoverer (PD) version 1.3 (Thermo Scientific). The non-fragment filter was used to 

simplify ETD spectra to remove unfragmented precursor or charge-reduced precursor peaks. 

Peak lists were searched against a forward and reverse Mus musculus UniProt database 

(74232 sequences) using both Mascot (Matrix Science) and Sequest (Thermo Scientific). 

The following parameters were used to identify tryptic peptides for protein identification: 10 

ppm precursor ion mass tolerance; 0.6 Da product ion mass tolerance; up to two missed 

trypsin cleavage sites; carbamidomethylation of Cys was set as a fixed modification; 

oxidation of Met and phosphorylation of Ser, Thr, and Tyr were set as variable 

modifications. The percolator node was used to estimate the number of false positive 

identifications, and a q-value was assigned; a “high confidence” q-value of <0.01 was used 

to filter all results. The phosphoRS algorithm was used to measure the phosphorylation site 

localization probabilities [37]. Only phosphopeptides with pRS probabilities above 70% 

were considered for phosphorylation motif analyses, which were conducted using motif-x 

[38,39]. Motif-x default settings were used (with the MS/MS IPI Mouse Proteome as 

foreground format and as background), except the significance threshold was set to a more 

stringent value of 1×10−7 to reduce false positives. For relative quantification of specific 

phosphopeptides, peaks areas for each identified phosphopeptide were extracted using the 

peak area node in PD.

2.8 Bioinformatics Analysis

All analyses were conducted using either JMP Pro 10.0 (SAS Institute, www.sas.com) or 

Microsoft Excel 2010. The ClueGo plug-in [40] within Cytoscape [41] (version 3.0.2) was 

used to determine over-represented molecular function GO annotations and KEGG 

pathways. Enrichment analysis was based on two-sided minimal-likelihood test on the 

hypergeometric distribution. The Bonferroni step down correction was employed to adjust 
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p-values for statistically enriched terms (p-value of 0.1 was considered significant). Venn 

diagrams were generated using the Venn Diagram Plotter (PNNL, omics.pnl.gov).

3. Results and Discussion

3.1 Development of a tandem phosphopeptide enrichment strategy combining ERLIC, 
IMAC and TiO2 with CID/ETD LC/MS/MS analysis

The aim of this study was to develop an optimal phosphopeptide enrichment strategy to 

detect phosphorylation events occurring in PDGF-stimulated fibroblasts using mass 

spectrometry. In order to reduce sample complexity and increase the ability to identify 

phosphopeptides, we coupled ERLIC with tandem IMAC/TiO2 enrichment. ERLIC was 

chosen for off-line LC peptide separation since it is a combination of hydrophilic interaction 

and weak anion-exchange that favors retention and separation of relatively hydrophilic, 

negatively charged analytes such as phosphopeptides [17]. Previous studies using only 

ERLIC have demonstrated an enrichment of phosphopeptides [42,43]. To test this with our 

system, we analyzed several ERLIC fractions by LC/MS/MS and detected very few 

phosphopeptides (data not shown), which has also been reported in the literature [34,44]; 

therefore, an enrichment step after ERLIC fractionation was required.

Frequently after any type of off-line LC separation of peptides, the phosphopeptides are 

enriched using IMAC or TiO2. The capacity of the IMAC or TiO2 material can be estimated, 

but regardless of this, some phosphopeptides will have limited binding due to the low 

phosphorylation stoichiometry, as well as competition with other phosphopeptides and 

acidic peptides, thus precluding their identification. In order to enrich for phosphopeptides 

that may have not been captured when only implementing a single enrichment strategy and 

eventually end up in the flow-through/wash portion of the sample, a tandem phosphopeptide 

enrichment approach was developed. By retaining the flow-through/wash generated by one 

phosphopeptide enrichment method and subjecting it to a different enrichment method, it is 

possible to maximize the number of unique phosphopeptides identified [30].

In this study, a combination of IMAC (Fe-IMAC) and TiO2 was chosen in order to take 

advantage of both phosphopeptide enrichment methods. Our order of phosphopeptide 

enrichment by IMAC and TiO2 was experimentally determined by comparing the 

enrichment of unstimulated NIH 3T3 cell lysate digest (200 µg) using IMAC first, followed 

by TiO2 enrichment of the IMAC flow-through/wash (the IMAC-TiO2 sample) versus 

enriching the same amount of NIH 3T3 cell lysate digest with TiO2 first, then using IMAC 

on the TiO2 flow-through/wash (the TiO2-IMAC sample). As shown in Supplementary 

Figure S2, using IMAC or TiO2 first enriched for about the same number of 

phosphopeptides, but the enrichment percentage was lower for IMAC (45%) when 

compared to TiO2 (80%), thus indicating that a higher level of non-specific binding was 

occurring with IMAC. For the second enrichment step, the IMAC-TiO2 fraction produced 

more identified unique phosphopeptides than the TiO2-IMAC fraction; therefore, the tandem 

enrichment order of IMAC followed by TiO2 was used for our study. It should be noted that 

the IMAC-TiO2 flow-through/wash was also analyzed, but only 44 phosphopeptides out of 

4059 total peptides (1% enrichment) were identified, and thus it was excluded from 

subsequent analyses.
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For our study, NIH 3T3 cells were stimulated with PDGF for 0, 15 and 120 min then lysed 

and digested with trypsin. Each lysate digest (3 mg for each time point) was separated using 

ERLIC to produce a total of five fractions, which were subsequently enriched for 

phosphopeptides with our optimized tandem IMAC/TiO2 method (Figure 1). Although the 

number of ERLIC fractions was less than the typical 10 to 25 fractions generated by ERLIC 

or SCX for off-line peptide separations [19,22,42], the number of fractions doubles to 10 per 

stimulation time point (30 samples total) since each ERLIC fraction was subjected to tandem 

IMAC/TiO2 enrichment. Therefore, minimizing the number of ERLIC fractions helped to 

reduce sample preparation and LC/MS/MS acquisition time. The list of unique 

phosphopeptides for all ERLIC fractions and subsequent affinity enrichment steps is 

presented in Supplementary Table S1.

To better identify phosphopeptides during LC/MS/MS, a data dependent DT acquisition 

method utilizing CID and ETD was evaluated (Supplementary Figure S3A) and 

implemented. After data processing, 11,310 unique phosphopeptides were identified across 

all 30 samples. The phosphopeptides targeted for ETD fragmentation resulted in slightly 

higher phosphorylation site localization probabilities (pRS probabilities) compared to 

phosphopeptides targeted for CID fragmentation (Supplementary Figure S3B) and about 9% 

of phosphorylated peptides were uniquely identified using ETD (Supplementary Figure 

S3C).

3.2 Enhanced phosphopeptide detection in NIH 3T3 cells using a tandem IMAC/TiO2 

enrichment approach

To evaluate the phosphopeptide enrichment strategies, all five ERLIC fractions 

corresponding to IMAC and IMAC-TiO2 enrichment at each time point of PDGF 

stimulation were examined. A similar phosphopeptide distribution in ERLIC fractions 

among each corresponding IMAC and IMAC-TiO2 sample was observed across the time 

course (Figure 2A). For ERLIC Fractions 1–4, a disproportionate number of 

phosphopeptides were enriched by IMAC compared to IMAC-TiO2 with an exception 

occurring at ERLIC Fraction 2 at 15 min. However, for ERLIC Fraction 5 across all time 

points, the number of phosphopeptides enriched by IMAC-TiO2 was dramatically higher 

than IMAC enrichment and is in stark contrast to the other four ERLIC fractions. The 

consistency in the level of phosphopeptide enrichment between IMAC and IMAC-TiO2 

across all time points indicates that this method is robust among ERLIC fractionated 

unstimulated and stimulated samples.

These observations can be explained when considering the nature of the ERLIC separation. 

During ERLIC, the gradient linearly increases from 20 to 300 mM ammonium formate, thus 

the highly acidic or multiply phosphorylated peptides elute later in the gradient and is best 

represented by ERLIC Fraction 5. The population of phosphopeptides detected in this 

fraction suggests that IMAC is less effective at enriching for acidic and/or multiply 

phosphorylated peptides than the subsequent TiO2 step. To determine if non-specific 

binding of acidic peptides was the cause of this decrease in IMAC-enriched 

phosphopeptides, the non-phosphorylated peptides were examined. In ERLIC fraction 5, the 

number of non-phosphorylated peptides was low for both IMAC and IMAC-TiO2 samples, 
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suggesting that IMAC was not enriching for highly acidic non-phosphorylated peptides at 

the expense of phosphopeptides. This decrease in IMAC-enriched phosphopeptides in later 

ERLIC fractions has been observed previously [34].

When considering all unique 11,310 phosphopeptides identified, only 23% were identified 

in both the IMAC and IMAC-TiO2 fractions with more unique phosphopeptides identified in 

the IMAC fractions (46%) compared to the IMAC-TiO2 fractions (31%) (Figure 2B). This 

relatively low overlap suggests that using a tandem IMAC/TiO2 enrichment strategy yields 

more unique phosphopeptide identifications as opposed to using only IMAC or TiO2 after 

the ERLIC separation. It is interesting to note that the general characteristics of the 

phosphopeptide populations enriched by either IMAC or IMAC-TiO2 are different: (1) 

longer phosphopeptides were enriched in the IMAC-TiO2 fractions compared to IMAC 

fractions and (2) the overall pI of the phosphopeptide population in the IMAC-TiO2 

fractions was lower (average pI of 4.6) than the IMAC fractions (average pI of 6).

When considering the subgroup of multiply phosphorylated peptides (Figure 3A), IMAC-

TiO2 enriched for multiply phosphorylated peptides slightly more efficiently than IMAC on 

the basis of enrichment percentage (17% compared to 13%), but both enrichments produced 

nearly the same number of unique multiply phosphorylated peptides. A closer examination 

of individual ERLIC fractions reveals that for ERLIC Fractions 1–4, IMAC enriched for a 

greater number and higher percentage of multiply phosphorylated peptides (Figure 3B) 

compared to IMAC-TiO2 (Figure 3C); however, for ERLIC Fraction 5, IMAC-TiO2 is 

vastly superior to IMAC. Considering that 74% of all multiply phosphorylated peptides 

identified by IMAC-TiO2 were in ERLIC Fraction 5, it can be concluded that IMAC-TiO2 is 

able to enrich for larger, highly acidic multiply phosphorylated peptides better than IMAC. 

Overall, these data suggest that there is complementarity between the IMAC and IMAC-

TiO2 phosphopeptide enrichment methods as applied to ERLIC separated peptide fractions.

3.3 IMAC and IMAC-TiO2 enrich for different phosphorylation motifs

Although the tandem affinity enrichment of IMAC and IMAC-TiO2 of ERLIC fractionated 

peptides appear to favor basic and acidic phosphopeptides, respectively, the overall ratio of 

pS:pT:pY between these two enriched fractions was very similar: 84:14:2 and 87:12:1, 

respectively. In order to provide a more definitive comparison to assess the basic and acidic 

phosphopeptide preferences between the two enrichment methods, phosphorylation motif 

analysis was conducted using motif-x [38,39].

As shown in Figure 4A, IMAC and IMAC-TiO2 enrich for noticeably different pS motifs. 

The top pS motifs for the IMAC fractions were those with an overall neutral or positive 

charge, while the top motifs for the IMAC-TiO2 fractions were those with an overall 

negative charge. These results clearly indicate that the enrichment of ERLIC fractionated 

peptides: IMAC-TiO2 is better at enriching for acidic phosphopeptides than IMAC. For pT 

motifs (Figure 4B), IMAC and IMAC-TiO2 were able to enrich for very similar proline-

directed kinase motifs. Motif-x analysis was also conducted for pY motifs, but the low 

number of phosphopeptides (~100) used in the search precluded the identification of any 

motifs. To better understand these findings, the biological significance of the identified 

kinase motifs was examined.
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Many of the kinase motifs enriched by our ERLIC-based tandem IMAC/TiO2 affinity 

approach have been biologically well-characterized. The RRxpS motif is found in basophilic 

substrates that are phosphorylated by Arg-directed or AGC-family kinases, such as PKA, 

PKG, PKC, RSK and Akt, which all play important roles in signal transduction [45]. The 

(pS/T)PxK/R motifs are found in MAPK/CDK substrates, which are involved in cell 

proliferation and cell cycle control [46]. Some substrates for Akt, which plays a role in 

mediating critical cellular responses, are known to contain the RxRxxpS/T motif [47]. The 

pS motifs such as pS(D/E)xE and pSxDxExE, are found in acidophilic substrates 

phosphorylated by CK2. CK2 is a highly conserved, ubiquitous, and constitutively active 

Ser/Thr protein kinase with hundreds of targets that are involved in a variety of cellular 

processes such as cell cycle progression, apoptosis, transcription, inflammation, and DNA 

damage response [46,48]. It is widely known that the majority of peptides are 

phosphorylated by proline-directed kinases [38,49], thus are probably highly abundant 

relative to some other motifs. Two of these ubiquitous motifs (RxxpSP and pSPxK) were 

found in both IMAC and IMAC-TiO2 samples suggesting that the amount of IMAC resin 

used may not provide the necessary binding capacity to enrich for all phosphopeptides 

containing these motifs, and thus those not completely retained are further captured by 

subsequent TiO2 affinity.

A previous study also found that TiO2 has a tendency to isolate acidic phosphopeptides 

when compared to IMAC without any prior fractionation step [29] while another study 

found no bias in phosphopeptides enriched from complex peptide mixtures by IMAC and 

TiO2 [50]. To determine if the motif selectivity we observed was a result of ERLIC 

fractionation, motif-x analysis was conducted for LC/MS/MS identified peptides enriched 

from an unstimulated NIH 3T3 cell lysate using only IMAC or TiO2 enrichment. An almost 

identical mixture of both acidophilic and basophilic kinase substrate motifs were identified 

between the IMAC and TiO2 samples (Supplementary Figure S4), indicating that not as 

many unique motifs were identified if only IMAC or TiO2 enrichment were performed 

without prior ERLIC fractionation. Interestingly, if an additional enrichment step using 

either TiO2 on the IMAC flow-through/wash or IMAC on the TiO2 flow-through/wash was 

performed, enrichment of only motifs associated with basophilic kinase substrates was 

observed These data indicate that a significant enrichment of motifs associated with 

acidophilic kinase substrates occurs only if ERLIC fractionation is used prior to IMAC/TiO2 

tandem enrichment. In comparison to a previous study [42], ERLIC alone produced better 

coverage of acidophilic kinase substrates compared to SCX/IMAC, but SCX/IMAC 

produced better coverage of basophilic kinase substrates, which is consistent with the 

chemical basis of the separation prior to IMAC. Overall, these findings suggest that our 

method of combining ERLIC with IMAC/TiO2 tandem affinity increases the 

phosphopeptide enrichment efficiency of both acidophilic and basophilic kinase substrates.

3.4 Biological Effects upon PDGF Stimulation Time Course

To obtain a better understanding of the signaling pathways modulated by PDGF stimulation, 

the Cytoscape plugin, ClueGO, was used to determine the over-represented KEGG pathways 

within the total phosphoproteomic dataset (Figure 5). The pathways of interest, which 

include the well-characterized MAPK, Ras, and the PI3K-Akt pathways, were significantly 
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represented in the dataset. Intriguingly, the mTOR pathway, which is known to be involved 

in crosstalk with the PI3K-Akt and Ras pathways [51–53], was the most over-represented 

pathway in the dataset. Other interesting over-represented pathways include the cell cycle, 

focal adhesion signaling, and the p53 pathway. Several of the detected phosphorylation sites 

within proteins involved in these pathways are of unknown function (e.g., Ser198 on Rin1) 

or are completely novel sites (e.g., Ser1000 on Abl2), suggesting the possibility of novel 

regulatory features within the PDGF signaling network.

In terms of overall phosphorylation identification (Supplementary Figure S5), the overlap of 

phosphopeptides in all three sample sets (0, 15 and 120 min) was 21% whereas the 

phosphoprotein overlap was 45%, indicating that numerous phosphorylation events are 

occurring upon PDGF stimulation. The over-represented molecular function GO terms for 

each PDGF stimulation time point are shown in Supplementary Figure S6. It is evident that 

some functions are more prevalent during specific PDGF stimulation time points. For 

example, kinase activity and histone binding were over-represented at 15 min whereas 

cytoskeletal binding and phosphatase activity were over-represented at 120 min. Very few 

phosphoregulated functions were over-represented at 0 min, consistent with quiescent cell 

state.

To explore the data further, the phosphorylation dynamics of specific phosphopeptides 

corresponding to proteins in the Ras and PI3K signaling pathways were calculated 

(Supplementary Figure S7) and compared to previously published results. The ERK2 

phosphorylation sites pT183 and pY185 and the MEK1/2 phosphorylation site pS222 both 

displayed transient phosphorylation kinetics which are consistent with previously published 

immunoblot data [5,6]. Raf-1, which is phosphorylated by ERK1/2 at several residues 

including the identified pS642 site [54], clearly demonstrated a sustained increase in 

activation over time. A similar trend was previously observed in immunoblot analysis of 

other Raf-1 sites phosphorylated by ERK1/2 [6]. These results suggest that the 

multidimensional phosphopeptide enrichment method presented here could be a viable 

approach for future quantitative studies.

4. Conclusions

In this study, a phosphopeptide enrichment strategy that combines ERLIC and tandem 

IMAC-TiO2 enrichment was developed and applied to PDGF-stimulated NIH 3T3 cells. We 

determined that phosphopeptide enrichment using IMAC followed by TiO2 enrichment was 

the optimal order of enrichment. When applied to ERLIC fractions, the level of 

phosphopeptide enrichment was consistent between IMAC and IMAC-TiO2 across all time 

points suggesting that this method is reliable even for comparisons among unstimulated and 

stimulated samples. Furthermore, the enrichment strategy yielded a wide variety of 

phosphorylation motifs suggesting that IMAC-TiO2 tandem affinity is needed to obtain the 

full complement of kinase substrates. It should be noted that the number of phosphopeptides 

identified could vary greatly depending upon the specific IMAC (e.g., implementing metal 

ions other than Fe3+) and TiO2 materials and protocols used, tissue or cell type, and other 

sample preparation variables required for a particular study. However, the motif selectivity 

displayed should still be observed for other systems using our ERLIC/IMAC/TiO2 approach.
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Based on GO annotation, specific molecular functions were over-represented at each time 

point, indicating that PDGF stimulation induces phosphorylation changes in a variety of 

proteins, not just those in the Ras and PI3K pathways. The phosphorylation changes for a 

few well-characterized proteins were calculated, suggesting that quantitative data can be 

obtained using our current approach. Given the importance of protein phosphorylation in 

cell regulation, the ERLIC and tandem IMAC-TiO2 phosphopeptide enrichment approach 

presented here should be useful for future quantitative studies to further improve our 

understanding of signal transduction networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Developed a novel ERLIC-IMAC-TiO2 phosphoproteomic enrichment 

approach.

• Applied to PDGF-responsive cells, yielding 11,000+ phosphopeptide 

identifications.

• Identified several enrichment method-specific phosphorylation motifs.

• Many biological pathways including MAPK and mTOR were over-represented 

in the data.
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Figure 1. 
Experimental workflow. NIH 3T3 cells were stimulated with 300 pM PDGF for 0, 15, and 

120 min, then harvested. Each lysate (3 mg) was denatured, reduced, alkylated, digested 

with trypsin, then fractionated using ERLIC. Selected ERLIC fractions were pooled to 

generate five fractions per stimulation time point, and each ERLIC fraction was 

subsequently enriched for phosphopeptides using IMAC. The IMAC eluate for each fraction 

per time point was set aside, while the IMAC flow-through/wash (FT/W) was subjected to 

further phosphopeptide enrichment using TiO2. LC/MS/MS analysis of the IMAC eluate 
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(referred to as the IMAC fraction) and the TiO2 eluate from the IMAC FT/W (referred to as 

the IMAC-TiO2 fraction) was performed using an Orbitrap Elite system implementing 

CID/ETD decision tree (DT) acquisition analysis.
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Figure 2. 
Distribution of phosphopeptides detected in the IMAC and IMAC-TiO2 samples for PDGF-

stimulated NIH 3T3 cells. (A) Number of phosphopeptides identified in each IMAC and 

IMAC-TiO2 sample for each stimulation time point and ERLIC fraction. (B) A Venn 

diagram of unique phosphopeptides identified in the IMAC and IMAC-TiO2 samples. 

“IMAC” samples were generated by enriching each of the five ERLIC fractions using 

IMAC, and “IMAC-TiO2” samples were generated by enriching each IMAC flow-through/

wash using TiO2.
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Figure 3. 
Assessment of multiply-phosphorylated peptides. (A) Pie charts illustrating the number and 

percentage of monophosphorylated and multiply phosphorylated peptides identified in the 

IMAC and IMAC-TiO2 samples. The distribution of the percentage and number of mono- 

and multiply-phosphorylated peptides identified in each individual ERLIC fraction across all 

time points for the (B) IMAC and (C) IMAC-TiO2 fractions. “IMAC” samples were 

generated by enriching each of the five ERLIC fractions using IMAC, and “IMAC-TiO2” 

samples were generated by enriching each IMAC flow-through/wash using TiO2.
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Figure 4. 
Phosphorylation motif analyses of phosphopeptides identified in PDGF-stimulated NIH 3T3 

cells across all time points using motif-x. Phosphopeptides with at least a 70% site 

localization confidence score (pRS of 0.7) were used for motif-x analysis. Of the 11,310 

unique phosphopeptides identified in all fractions and time points, 7,145 have a pRS 

probability ≥ 0.7. The top six phosphorylation motifs generated for (A) phosphoserine (pS) 

and (B) phosphothreonine (pT) in the IMAC and IMAC-TiO2 fractions are presented (top to 

bottom) according to motif score and fold increase. “IMAC” samples were generated by 

enriching each of the five ERLIC fractions using IMAC, and “IMAC-TiO2” samples were 

generated by enriching each IMAC flow-through/wash using TiO2.
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Figure 5. 
KEGG pathway analysis of all identified phosphoproteins. The ClueGO plugin within 

Cytoscape was used to determine which KEGG pathways were over-represented in the total 

dataset. The size of the nodes reflects the statistical significance of the terms. The kappa 

score indicates the relationship between terms according to their overlapping genes and was 

set to the default of 0.4. The most representative term (based on the highest percentage of 

identified proteins per term) in a group is used as the group name. Only protein groups 

considered relevant are shown.
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