173 research outputs found
Scaling in the time-dependent failure of a fiber bundle with local load sharing
We study the scaling behaviors of a time-dependent fiber-bundle model with
local load sharing. Upon approaching the complete failure of the bundle, the
breaking rate of fibers diverges according to ,
where is the lifetime of the bundle, and is a quite
universal scaling exponent. The average lifetime of the bundle scales
with the system size as , where depends on the
distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.
Gravastar Solutions with Continuous Pressures and Equation of State
We study the gravitational vacuum star (gravastar) configuration as proposed
by other authors in a model where the interior de Sitter spacetime segment is
continuously extended to the exterior Schwarzschild spacetime. The multilayered
structure in previous papers is replaced by a continuous stress-energy tensor
at the price of introducing anisotropy in the (fluid) model of the gravastar.
Either with an ansatz for the equation of state connecting the radial and
tangential pressure or with a calculated equation of state with
non-homogeneous energy/fluid density, solutions are obtained which in all
aspects satisfy the conditions expected for an anisotropic gravastar. Certain
energy conditions have been shown to be obeyed and a polytropic equation of
state has been derived. Stability of the solution with respect to possible
axial perturbation is shown to hold.Comment: 19 pages, 9 figures. Latest version contains new and updated
references along with some clarifying remarks in the stability analysi
Fracture of disordered solids in compression as a critical phenomenon: I. Statistical mechanics formalism
This is the first of a series of three articles that treats fracture
localization as a critical phenomenon. This first article establishes a
statistical mechanics based on ensemble averages when fluctuations through time
play no role in defining the ensemble. Ensembles are obtained by dividing a
huge rock sample into many mesoscopic volumes. Because rocks are a disordered
collection of grains in cohesive contact, we expect that once shear strain is
applied and cracks begin to arrive in the system, the mesoscopic volumes will
have a wide distribution of different crack states. These mesoscopic volumes
are the members of our ensembles. We determine the probability of observing a
mesoscopic volume to be in a given crack state by maximizing Shannon's measure
of the emergent crack disorder subject to constraints coming from the
energy-balance of brittle fracture. The laws of thermodynamics, the partition
function, and the quantification of temperature are obtained for such cracking
systems.Comment: 11 pages, 2 figure
Avalanches in Breakdown and Fracture Processes
We investigate the breakdown of disordered networks under the action of an
increasing external---mechanical or electrical---force. We perform a mean-field
analysis and estimate scaling exponents for the approach to the instability. By
simulating two-dimensional models of electric breakdown and fracture we observe
that the breakdown is preceded by avalanche events. The avalanches can be
described by scaling laws, and the estimated values of the exponents are
consistent with those found in mean-field theory. The breakdown point is
characterized by a discontinuity in the macroscopic properties of the material,
such as conductivity or elasticity, indicative of a first order transition. The
scaling laws suggest an analogy with the behavior expected in spinodal
nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in
authors name, no changes to the pape
Quasi-stationary regime of a branching random walk in presence of an absorbing wall
A branching random walk in presence of an absorbing wall moving at a constant
velocity undergoes a phase transition as the velocity of the wall
varies. Below the critical velocity , the population has a non-zero
survival probability and when the population survives its size grows
exponentially. We investigate the histories of the population conditioned on
having a single survivor at some final time . We study the quasi-stationary
regime for when is large. To do so, one can construct a modified
stochastic process which is equivalent to the original process conditioned on
having a single survivor at final time . We then use this construction to
show that the properties of the quasi-stationary regime are universal when
. We also solve exactly a simple version of the problem, the
exponential model, for which the study of the quasi-stationary regime can be
reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde
Bursts in a fiber bundle model with continuous damage
We study the constitutive behaviour, the damage process, and the properties
of bursts in the continuous damage fiber bundle model introduced recently.
Depending on its two parameters, the model provides various types of
constitutive behaviours including also macroscopic plasticity. Analytic results
are obtained to characterize the damage process along the plastic plateau under
strain controlled loading, furthermore, for stress controlled experiments we
develop a simulation technique and explore numerically the distribution of
bursts of fiber breaks assuming infinite range of interaction. Simulations
revealed that under certain conditions power law distribution of bursts arises
with an exponent significantly different from the mean field exponent 5/2. A
phase diagram of the model characterizing the possible burst distributions is
constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio
At the edge of intonation: the interplay of utterance-final F0 movements and voiceless fricative sounds
The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four types of voiceless fricatives: /f/, /s/, /ʃ/ and /x/. They were elicited with scripted dialogues in the contexts of terminal falling statement and high rising question intonations. Acoustic analyses show that fricatives concluding the high rising question intonations had higher mean centres of gravity (CoGs), larger CoG ranges and higher noise energy levels than fricatives concluding the terminal falling statement intonations. The different spectral-energy patterns are suitable to induce percepts of a high 'aperiodic pitch' at the end of the questions and of a low 'aperiodic pitch' at the end of the statements. The results are discussed with regard to the possible existence of 'segmental intonation' and its implication for F0 truncation and the segment-prosody dichotomy, in which segments are the alleged troublemakers for the production and perception of intonation
Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment)
Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 273 (2007): 383-393, doi:10.1007/s10967-007-6898-4.A reference material designed for the determination of anthropogenic and natural radionuclides in sediment, IAEA-384 (Fangataufa Lagoon sediment), is described and the results of certification are presented. The material has been certified for 8 radionuclides (40K, 60Co, 155Eu, 230Th, 238U, 238Pu, 239+240Pu and 241Am). Information values are given for 12 radionuclides (90Sr, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 232Th, 234U, 235U, 239Pu, 240Pu and 241Pu). Less reported radionuclides include 228Th, 236U, 239Np and 242Pu. The reference material may be used for quality management of radioanalytical laboratories engaged in the analysis of radionuclides in the environment, as well as for the development and validation of analytical methods and for training purposes. The material is available from IAEA in 100 g units
Barbero-Immirzi parameter, manifold invariants and Euclidean path integrals
The Barbero-Immirzi parameter appears in the \emph{real} connection
formulation of gravity in terms of the Ashtekar variables, and gives rise to a
one-parameter quantization ambiguity in Loop Quantum Gravity. In this paper we
investigate the conditions under which will have physical effects in
Euclidean Quantum Gravity. This is done by constructing a well-defined
Euclidean path integral for the Holst action with non-zero cosmological
constant on a manifold with boundary. We find that two general conditions must
be satisfied by the spacetime manifold in order for the Holst action and its
surface integral to be non-zero: (i) the metric has to be non-diagonalizable;
(ii) the Pontryagin number of the manifold has to be non-zero. The latter is a
strong topological condition, and rules out many of the known solutions to the
Einstein field equations. This result leads us to evaluate the on-shell
first-order Holst action and corresponding Euclidean partition function on the
Taub-NUT-ADS solution. We find that shows up as a finite rotation of
the on-shell partition function which corresponds to shifts in the energy and
entropy of the NUT charge. In an appendix we also evaluate the Holst action on
the Taub-NUT and Taub-bolt solutions in flat spacetime and find that in that
case as well shows up in the energy and entropy of the NUT and bolt
charges. We also present an example whereby the Euler characteristic of the
manifold has a non-trivial effect on black-hole mergers.Comment: 18 pages; v2: references added; to appear in Classical and Quantum
Gravity; v3: typos corrected; minor revisions to match published versio
Atlas of lesion locations and postsurgical seizure freedom in focal cortical dysplasia: A MELD study
Objective:
Drug-resistant focal epilepsy is often caused by focal cortical dysplasias (FCDs). The distribution of these lesions across the cerebral cortex and the impact of lesion location on clinical presentation and surgical outcome are largely unknown. We created a neuroimaging cohort of patients with individually mapped FCDs to determine factors associated with lesion location and predictors of postsurgical outcome.
Methods:
The MELD (Multi-centre Epilepsy Lesion Detection) project collated a retrospective cohort of 580 patients with epilepsy attributed to FCD from 20 epilepsy centers worldwide. Magnetic resonance imaging-based maps of individual FCDs with accompanying demographic, clinical, and surgical information were collected. We mapped the distribution of FCDs, examined for associations between clinical factors and lesion location, and developed a predictive model of postsurgical seizure freedom.
Results:
FCDs were nonuniformly distributed, concentrating in the superior frontal sulcus, frontal pole, and temporal pole. Epilepsy onset was typically before the age of 10 years. Earlier epilepsy onset was associated with lesions in primary sensory areas, whereas later epilepsy onset was associated with lesions in association cortices. Lesions in temporal and occipital lobes tended to be larger than frontal lobe lesions. Seizure freedom rates varied with FCD location, from around 30% in visual, motor, and premotor areas to 75% in superior temporal and frontal gyri. The predictive model of postsurgical seizure freedom had a positive predictive value of 70% and negative predictive value of 61%.
Significance:
FCD location is an important determinant of its size, the age at epilepsy onset, and the likelihood of seizure freedom postsurgery. Our atlas of lesion locations can be used to guide the radiological search for subtle lesions in individual patients. Our atlas of regional seizure freedom rates and associated predictive model can be used to estimate individual likelihoods of postsurgical seizure freedom. Data-driven atlases and predictive models are essential for evidence-based, precision medicine and risk counseling in epilepsy
- …