871 research outputs found

    Two-band superconductors: Extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature

    Full text link
    We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1-T/T_c. The two lowest orders of this expansion produce the equation for T_c and the GL theory. It is shown that in agreement with previous studies, the two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two band condensates. We prove that except for some very special cases, this difference appears already in the leading correction to the GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps (at zero field), which are in a very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation

    Limits on non-Gaussianities from WMAP data

    Full text link
    We develop a method to constrain the level of non-Gaussianity of density perturbations when the 3-point function is of the "equilateral" type. Departures from Gaussianity of this form are produced by single field models such as ghost or DBI inflation and in general by the presence of higher order derivative operators in the effective Lagrangian of the inflaton. We show that the induced shape of the 3-point function can be very well approximated by a factorizable form, making the analysis practical. We also show that, unless one has a full sky map with uniform noise, in order to saturate the Cramer-Rao bound for the error on the amplitude of the 3-point function, the estimator must contain a piece that is linear in the data. We apply our technique to the WMAP data obtaining a constraint on the amplitude f_NL^equil of "equilateral" non-Gaussianity: -366 < f_NL^equil < 238 at 95% C.L. We also apply our technique to constrain the so-called "local" shape, which is predicted for example by the curvaton and variable decay width models. We show that the inclusion of the linear piece in the estimator improves the constraint over those obtained by the WMAP team, to -27 < f_NL^local < 121 at 95% C.L.Comment: 20 pages, 12 eps figure

    Can billiard eigenstates be approximated by superpositions of plane waves?

    Full text link
    The plane wave decomposition method (PWDM) is one of the most popular strategies for numerical solution of the quantum billiard problem. The method is based on the assumption that each eigenstate in a billiard can be approximated by a superposition of plane waves at a given energy. By the classical results on the theory of differential operators this can indeed be justified for billiards in convex domains. On the contrary, in the present work we demonstrate that eigenstates of non-convex billiards, in general, cannot be approximated by any solution of the Helmholtz equation regular everywhere in R2\R^2 (in particular, by linear combinations of a finite number of plane waves having the same energy). From this we infer that PWDM cannot be applied to billiards in non-convex domains. Furthermore, it follows from our results that unlike the properties of integrable billiards, where each eigenstate can be extended into the billiard exterior as a regular solution of the Helmholtz equation, the eigenstates of non-convex billiards, in general, do not admit such an extension.Comment: 23 pages, 5 figure

    Probing local non-Gaussianities within a Bayesian framework

    Full text link
    Aims: We outline the Bayesian approach to inferring f_NL, the level of non-Gaussianity of local type. Phrasing f_NL inference in a Bayesian framework takes advantage of existing techniques to account for instrumental effects and foreground contamination in CMB data and takes into account uncertainties in the cosmological parameters in an unambiguous way. Methods: We derive closed form expressions for the joint posterior of f_NL and the reconstructed underlying curvature perturbation, Phi, and deduce the conditional probability densities for f_NL and Phi. Completing the inference problem amounts to finding the marginal density for f_NL. For realistic data sets the necessary integrations are intractable. We propose an exact Hamiltonian sampling algorithm to generate correlated samples from the f_NL posterior. For sufficiently high signal-to-noise ratios, we can exploit the assumption of weak non-Gaussianity to find a direct Monte Carlo technique to generate independent samples from the posterior distribution for f_NL. We illustrate our approach using a simplified toy model of CMB data for the simple case of a 1-D sky. Results: When applied to our toy problem, we find that, in the limit of high signal-to-noise, the sampling efficiency of the approximate algorithm outperforms that of Hamiltonian sampling by two orders of magnitude. When f_NL is not significantly constrained by the data, the more efficient, approximate algorithm biases the posterior density towards f_NL = 0.Comment: 11 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning

    Full text link
    An exact analytical solution is given for the critical state problem in long thin superconductor strips in a perpendicular magnetic field, when the critical current density j_c(B) depends on the local induction B according to a simple three-parameter model. This model describes both isotropic superconductors with this j_c(B) dependence, but also superconductors with anisotropic pinning described by a dependence j_c(theta) where theta is the tilt angle of the flux lines away from the normal to the specimen plane

    Phonon-Coupled Electron Tunneling in Two and Three-Dimensional Tunneling Configurations

    Full text link
    We treat a tunneling electron coupled to acoustical phonons through a realistic electron phonon interaction: deformation potential and piezoelectric, in two or three-dimensional tunneling configurations. Making use of slowness of the phonon system compared to electron tunneling, and using a Green function method for imaginary time, we are able to calculate the change in the transition probability due to the coupling to phonons. It is shown using standard renormalization procedure that, contrary to the one-dimensional case, second order perturbation theory is sufficient in order to treat the deformation potential coupling, which leads to a small correction to the transmission coefficient prefactor. In the case of piezoelectric coupling, which is found to be closely related to the piezoelectric polaron problem, vertex corrections need to be considered. Summing leading logarithmic terms, we show that the piezoelectric coupling leads to a significant change of the transmission coefficient.Comment: 17 pages, 4 figure

    An Improved Calculation of the Non-Gaussian Halo Mass Function

    Full text link
    The abundance of collapsed objects in the universe, or halo mass function, is an important theoretical tool in studying the effects of primordially generated non-Gaussianities on the large scale structure. The non-Gaussian mass function has been calculated by several authors in different ways, typically by exploiting the smallness of certain parameters which naturally appear in the calculation, to set up a perturbative expansion. We improve upon the existing results for the mass function by combining path integral methods and saddle point techniques (which have been separately applied in previous approaches). Additionally, we carefully account for the various scale dependent combinations of small parameters which appear. Some of these combinations in fact become of order unity for large mass scales and at high redshifts, and must therefore be treated non-perturbatively. Our approach allows us to do this, and to also account for multi-scale density correlations which appear in the calculation. We thus derive an accurate expression for the mass function which is based on approximations that are valid over a larger range of mass scales and redshifts than those of other authors. By tracking the terms ignored in the analysis, we estimate theoretical errors for our result and also for the results of others. We also discuss the complications introduced by the choice of smoothing filter function, which we take to be a top-hat in real space, and which leads to the dominant errors in our expression. Finally, we present a detailed comparison between the various expressions for the mass functions, exploring the accuracy and range of validity of each.Comment: 28 pages, 13 figures; v2: text reorganized and some figured modified for clarity, results unchanged, references added. Matches version published in JCA

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
    • …
    corecore