17 research outputs found

    The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism

    No full text
    We recently discovered that a signaling lipid, sphingosine-1-phosphate (S1P), generated by sphingosine kinase 1, regulates a major epidermal antimicrobial peptide’s [cathelicidin antimicrobial peptide (CAMP)] expression via an NF-κB→C/EBPα-dependent pathway, independent of vitamin D receptor (VDR) in epithelial cells. Activation of estrogen receptors (ER) by either estrogens or phytoestrogens also is known to stimulate S1P production, but it is unknown whether ER activation increases CAMP production. We investigated whether a phytoestrogen, genistein, simulates CAMP expression in keratinocytes, a model of epithelial cells, by either a S1P-dependent mechanism(s) or the alternate VDR-regulated pathway. Exogenous genistein, as well as a ER-β ligand, WAY-200070, increased CAMP mRNA and protein expression in cultured human keratinocytes, while ER-β antagonist, ICI182780, attenuated the expected genistein- and WAY-200070-induced increase in CAMP mRNA/protein expression. Genistein treatment increased acidic and alkaline ceramidase expression and cellular S1P levels in parallel with increased S1P lyase inhibition, accounting for increased CAMP production. In contrast, siRNA against VDR did not alter genistein-mediated upregulation of CAMP. Taken together, genistein induces CAMP production via an ER-β→S1P→NF-κB→C/EBPα-rather than a VDR-dependent mechanism, illuminating a new role for estrogens in the regulation of epithelial innate immunity and pointing to potential additional benefits of dietary genistein in enhancing cutaneous antimicrobial defense

    Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture

    No full text
    Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explaine their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release
    corecore