31 research outputs found

    Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider?

    Get PDF
    This paper provides the basis for understanding the preparation and properties of an old, but advanced material: activated carbon. The activated carbons discussed herein are obtained from “green” precursors: biomass residues. Accordingly, the present study starts analyzing the components of biomass residues, such as cellulose, hemicellulose, and lignin, and the features that make them suitable raw materials for preparing activated carbons. The physicochemical transformations of these components during their heat treatment that lead to the development of a carbonized material, a biochar, are also considered. The influence of the chemical activation experimental conditions on the yield and porosity development of the final activated carbons are revised as well, and compared with those for physical activation, highlighting the physicochemical interactions between the activating agents and the lignocellulosic components. This review incorporates a comprehensive discussion about the surface chemistry that can be developed as a result of chemical activation and compiles some results related to the mechanical properties and conformation of activated carbons, scarcely analyzed in most published papers. Finally, economic, and environmental issues involved in the large-scale preparation of activated carbons by chemical activation of lignocellulosic precursors are commented on as well.This research was funded by Generalitat Valenciana (PROMETEO/2018/076), European Commission/FEDER, and the University of Alicante (VIGROB-136)

    Thermosensitivity of the Saccharomyces cerevisiae gpp1gpp2 double deletion strain can be reduced by overexpression of genes involved in cell wall maintenance

    Get PDF
    A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3-genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation. © 2007 Springer-Verlag

    Father's occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical research has not been able to establish whether a father's occupational exposures are associated with the development of acute leukemia (AL) in their offspring. The studies conducted have weaknesses that have generated a misclassification of such exposure. Occupations and exposures to substances associated with childhood cancer are not very frequently encountered in the general population; thus, the reported risks are both inconsistent and inaccurate. In this study, to assess exposure we used a new method, an exposure index, which took into consideration the industrial branch, specific position, use of protective equipment, substances at work, degree of contact with such substances, and time of exposure. This index allowed us to obtain a grade, which permitted the identification of individuals according to their level of exposure to known or potentially carcinogenic agents that are not necessarily specifically identified as risk factors for leukemia. The aim of this study was to determine the association between a father's occupational exposure to carcinogenic agents and the presence of AL in their offspring.</p> <p>Methods</p> <p>From 1999 to 2000, a case-control study was performed with 193 children who reside in Mexico City and had been diagnosed with AL. The initial sample-size calculation was 150 children per group, assessed with an expected odds ratio (OR) of three and a minimum exposure frequency of 15.8%. These children were matched by age, sex, and institution with 193 pediatric surgical patients at secondary-care hospitals. A questionnaire was used to determine each child's background and the characteristics of the father's occupation(s). In order to determine the level of exposure to carcinogenic agents, a previously validated exposure index (occupational exposure index, OEI) was used. The consistency and validity of the index were assessed by a questionnaire comparison, the sensory recognition of the work area, and an expert's opinion.</p> <p>Results</p> <p>The adjusted ORs and 95% confidence intervals (CI) were 1.69 (0.98, 2.92) during the preconception period; 1.98 (1.13, 3.45) during the index pregnancy; 2.11 (1.17, 3.78) during breastfeeding period; 2.17 (1.28, 3.66) after birth; and 2.06 (1.24, 3.42) for global exposure.</p> <p>Conclusion</p> <p>This is the first study in which an OEI was used to assess a father's occupational exposure to carcinogenic agents as a risk factor for the development of childhood AL in his offspring. From our results, we conclude that children whose fathers have been exposed to a high level of carcinogenic agents seem to have a greater risk of developing acute leukemia. However, confounding factors cannot be disregarded due to an incomplete control for confounding.</p

    Encoding Metal-Cation Arrangements in Metal-Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides

    Get PDF
    In the present contribution, we report how through the use of metal–organic frameworks (MOFs) composed of addressable combinations of up to four different metal elements it is possible to program the composition of multimetal oxides, which are not attainable by other synthetic methodologies. Thus, due to the ability to distribute multiple metal cations at specific locations in the MOF secondary building units it is possible to code and transfer selected metal ratios to multimetal oxides with novel, desired compositions through a simple calcination process. The demonstration of an enhancement in the electrocatalytic activity of new oxides by preadjusting the metal ratios is here reported for the oxygen reduction reaction, for which activity values comparable to commercial Pt/C catalysts are reached, while showing long stability and methanol tolerance

    A Multi-metal Approach for the Reticulation of Iridium into Metal-Organic Framework Building Units

    No full text
    Noble metals (Ag, Au, Pt, Rh, Ir, Pd, Ru and Os) are ubiquitous in our everyday life, from medical applications to electronic devices and synthetic chemistry. Iridium is one of the least abundant elements, and despite its scarcity, it remains essential for efficient and active catalytic processes. Consequently, the development of heterogeneous catalysts with presence of active iridium sites is of enormous interest as it leads to the improvement of their recyclability and reusability. Here, we demonstrate a strategy to incorporate iridium atoms into metal-organic frameworks (MOFs), as part of their secondary building units (SBUs), resulting in robust and reusable materials with heterogeneous photocatalytic activity
    corecore