137 research outputs found

    Comparison of Experiment and Theory for Electron Impact Ionization of Isoelectronic Atoms and Molecules

    Get PDF
    Experimental and Theoretical Triply Differential Cross sections will be presented for low energy electron impact ionization of Ne, CH4, and NH3. The collision mechanisms responsible for the various structures found in the cross sections will be discussed

    Coplanar Asymmetric Angles and Symmetric Energy Sharing Triple Differential Cross Sections for 200 EV Electron-Impact Ionization of Ar (3p)

    Get PDF
    We have measured triple differential cross sections (TDCSs) for electron-impact ionization of the 3p shell of Ar at 200 eV incident electron energy. The experiments have been performed in coplanar asymmetric energy sharing geometry. The experimental results are compared with the theoretical models of three body distorted wave (3DW) and distorted wave Born approximation (DWBA)

    Theoretical and experimental(e,2e)study of electron-impact ionization of laser-aligned Mg atoms

    Get PDF
    We have performed calculations of the fully differential cross sections for electron impact ionization of magnesium atoms. Three theoretical approximations, the time dependent close coupling (TDCC), the three body distorted wave (3DW), and the Distorted Wave Born Approximation (DWBA), are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly-polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and experimental results will be compared for several different alignment angles, both in the scattering plane as well as in the plane perpendicular to the incident beam direction

    Evidence for Unnatural-Parity Contributions to Electron-Impact Ionization of Laser-Aligned Atoms

    Get PDF
    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionization from excited Ca and Na atoms

    Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    Get PDF
    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionization from excited Ca and Na atoms

    Low-energy (Eâ‚€ = 65 eV) Electron-Impact Ionization of Neon: Internormalized Triple-Differentical Cross Sections in 3D Kinematics

    Get PDF
    We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    Mg-modified Zn-Co-Fe-La nano ferrites: a study of structural, morphological, vibrational, electro-optical, dielectric and magnetic evolution

    Get PDF
    The series of Zn0.4Co0.6−xMgxFe1.9La0.1O4 (x = 0.0, 0.15, 0.30, 0.45, 0.6) nanoferrites prepared via co-precipitation technique. Scherrer and Williamson-Hall (W-H) methods were used to find the crystallite size (29.6–39.2 nm and 31.6–36.3 nm, respectively) and lattice constant was calculated (8.406–8.395 Å). Moreover, Fourier transform infrared (FTIR) spectroscopy revealed the existence of absorption bands along with functional groups. The vibrations of O2- ions at the tetrahedral and octahedral sites were shown by the Raman five active modes. DC resistivity reduced in the range of 5.2961 × 108 Ω cm to 9.6453 × 107 Ω cm for x = 0.0 to x = 0.6, respectively. The maximum DC resistivity and activation energy (0.1035 eV) were obtained at the parent sample (Zn0.4Co0.6Fe1.9La0.1O4). The optical bandgaps reduced from 2.61 to 1.47 eV, as the Mg2+ contents increased. With increasing frequency the dielectric loss and the dielectric constant decrease. The magnetic parameters such as saturation magnetization (Ms = 60.82–25.94 emu/g), remnant magnetization (Mr = 47.82–18.64 emu/g), and coercivity (Hc = 1334–511 Oe) demonstrated reducing trends with the increase of Mg2+ doping. The best magnetic behavior of the as-prepared samples suitable in microwave devices was observed for Zn0.4Co0.6Fe1.9La0.1O4 sample
    • …
    corecore