55 research outputs found

    Effect Of Emulsification And Blending On The Oxygenation And Substitution Of Diesel Fuel For Compression Ignition Engine

    Get PDF
    Global emission standards are getting more stringent in which the existing diesel engine technologies are on the brink of losing their permit to operate. While there are successful engine side researches that can target the current emission norms, their implementation in existing engines will not be possible due to their higher price tag. With this respect, fuel side improvement with no or minimal modification to engine hardware is the best way to address the issue in the existing engines. The commonly used fuel oxygenators in diesel engines are water, alcohol, biodiesel and the combinations of these. The method of oxygenation and their corresponding results on the combustion, performance and emissions that have been reported in the literatures are widely varied. The current review article targets the blending and emulsification techniques used in the oxygenation and fuel substitution of diesel. Based on the misconceptions about the stability of emulsions, many researchers are found to use the term blending even though the technique they have used is emulsification. While blending of fuels is convenient for fuels which have relatively similar boiling temperature, emulsification technique should be followed for fuel mixtures of varied boiling temperature so that the benefit of micro-explosion can be reflected in the fuel atomization. Secondary atomization resulting from the micro-explosion phenomenon of emulsified fuels and fuel oxygenation are responsible for the improvement of combustion, performance and CO and PM emissions. Latent heat of vaporization is found to be responsible for the reduction of NOx emissions

    An Overview of Spark Ignition Engine Operating on Lower-Higher Molecular Mass Alcohol Blended Gasoline Fuels

    Get PDF
    This paper reviews the utilization of lower and higher molecular weight alcohols as fuel for spark ignition engine. As an alternative fuel for spark ignition engine, alcohol is widely accepted as comparable to gasolin. It is due to its ability that can be produced from biological matter through the current available and new processes. Moreover, alcohol is also considered as fuel additive due to its physical and chemical properties compatible with the requirements of modern engines. The objective of this paper is to provide an overview of these fuels by highlighting on the fuel properties and spark ignition engine responses. The first part of this review explains the important of alcohol fuel properties related to the engine performance and emissions, and the difference of these properties for each type of alcohol. The second part discusses recent advancements in research involving lower and higher molecular weight alcohols mainly responses from spark ignition engine

    US Dollar/IQ Dinar Currency Exchange Rates Time Series Forecasting Using ARIMA Model

    Get PDF
    The use of currency exchange estimation as a tool for economic planning is being researched as a technique for gaining economic stability. The main purpose of this study is to use the ARIMA model to forecast monthly US dollar and IQ dinar exchange rates. The information was gathered from January 2010 to December 2020. We got the information from the website (sa.investing.com). The minimum value of Root Mean Square Error (RMSE) and the mean absolute error are used to select the optimal model (MAE). ARIMA was found to be the best model for the US Dollar/IQ Dinar series (2, 1,0). This is the forecasted meaning for the future of this exchange rate time series, which indicates a perpetual increase continuously in the next two years. Statgraphics version 15 was the statistical software package utilized to complete this project

    Performance and Combustion Characteristics of an SI Engine Fueled With Fusel Oil-Gasoline at Different Water Content

    Get PDF
    The main objective of the current study is to investigate the impacts of fusel oil-gasoline blends with different water content on performance and combustion characteristics of an SI engine. The water content of fusel oil is reduced by employing rotary extractor method. The parameters examined in the current study are the effects of test fuels upon engine performance criteria, fuel combustion, location of CA50 and coefficient of variation of indicated mean effective pressure (COVIMEP). The experiments are conducted in a SI engine with two blending ratio of gasoline-fusel oil (FBWE10 and FAWE10) in addition to pure gasoline as a standard fuel under different engine speeds and constant 45% of WOT engine load. The study results reveal that engine power, torque, and brake thermal efficiency have slightly improved with fusel oil-gasoline blends that were obvious clearly after reduction of water content. On the other hand, though the brake specific fuel consumption of FAWE10 slightly improve compared to FBWE10 but still higher than gasoline. Furthermore, the peak in-cylinder pressure, rate of heat release, and rate of pressure rise enhanced with fusel oil-gasoline blends. The (CA 0–10) and (CA 10–90) duration could be simultaneously decreased by reducing the water content of fusel oil, all of that are helpful to improve the stability of combustion and thought to be reasons for the reduction in COVIMEP. As a conclusion, the reduction of fusel oil water content has played positively to enhance the combustion and performance characteristics of the fuel blend and result in more stable engine operation

    Analysis of Blended Fuel Properties and Cycle-To-Cycle Variation In A Diesel Engine With A Diethyl Ether Additive

    Get PDF
    In this study, the effect of adding small portions of a diethyl ether additive to biodiesel–diesel blended fuel (B30) was investigated. This study includes an evaluation of the fuel properties and a combustion analysis, specifically, an analysis of the cyclic variations in diesel engines. The amount of additive used with B30 is 2%, 4%, 6% and 8% (by volume). The experimental engine test was conducted at 2500 rpm which produce maximum torque, and the in-cylinder pressure data were collected over 200 consecutive engine cycles for each test. The indicated mean effective pressure time series is analyzed using the coefficient of variation and the wavelet analysis method. The test results for the properties show a slight improvement in density and acid value with a significant decrease in the viscosity, pour point and cloud point of the blended fuel with an 8% additive ratio by 26.5%, 4 °C and 3 °C, respectively, compared with blended fuel without additive. However, the heating value is reduced by approximately 4% with increasing the additive ratio to 8%. From the wavelet power spectrum, it is observed that the intermediate and long-term periodicities appear in diesel fuel, while the short-period oscillations become intermittently visible in pure blended fuel. The coefficient of variation for B30 was the lowest and increased as the additive ratios increased, which agrees with the wavelet analysis results. Furthermore, the spectral power increased with an increase in the additive ratio, indicating that the additive has a noticeable effect on increasing the cycle-to-cycle variations

    Optimization of biodiesel-diesel blended fuel properties and engine performance with ether additive using statistical analysis and response surface methods

    Get PDF
    In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume) diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM) with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE) based on RSM

    Investigation of the Emission Characteristics of Iso-Butanol Additives on Methanol-Gasoline Blends using Spark Ignition Engine / Hazim Sharudin ...[et al.]

    Get PDF
    Lower emissions of spark ignition engine can be achieved by using alcohol fuels such as methanol as it is more environmental advantage over fossil fuel. The methanol fuels can be further improved by added with iso-butanol as it have higher energy content and able to displace more gasoline fuel. Nevertheless, the research on the addition of lower ratio iso-butanol in methanol-gasoline blends specifically on exhaust emission is still not investigated thoroughly. Therefore, this study will focus on investigating the effect of iso-butanol additive on methanol-gasoline blends on the emission characteristics of spark ignition engine. The lower percentage (5%) of methanol-gasoline fuels was added with lower ratio of iso-butanol (5-15%) with 5% of volume increment. The experimental test were carried out on a 1.6-litre four-cylinder spark ignition engine at a fixed speed of 4000 rpm with increasing engine load form 10 Nm until 100 Nm. The results showed that the iso-butanol additive in methanol-gasoline blends was efficient to reduce the carbon monoxide (CO) and unburned hydrocarbon (HC) formation compared to base fuel. Among all tested fuels, M5B15 (Iso-butanol 15% + Methanol 5% + Gasoline 80%) blend gave lower CO and HC emissions by 12.45% and 16.18% at 100 Nm. Meanwhile, oxides of nitrogen (NOx) and carbon dioxide (CO2) emissions were higher for all methanol-gasoline blends with iso-butanol additives compared with that base gasoline. M5B15 blends gives higher emissions of NOx and CO2 by 11.45% and 11.74% at 100 Nm. This study summarized that iso-butanol additives can be applied in low percentage methanol-gasoline blends without any modification on the current existing engine, therefore reducing any serious environment impact

    Enhancement of corrosion protection of metal carbon steel C45 and stainless steel 316 by using inhibitor (Schiff base) in sea water

    Get PDF
    This research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was studied by cathode and anode polarization through which all corrosion parameters were investigated which include: corrosion current icorr (1341× 10-7-  5393 × 10-9A/cm2), corrosion potential Ecorr (-1.031-  -0.227 mV vs SCE) , corrosion rates CR (0.658-0.007 mm.y-1), inhibition efficiency %IE (92-98%), and energy activation barriers Ea (4.709-26.733 kJ/mole). The thermodynamic and kinetic properties of the corrosion behavior of these two metals under study, which include: enthalpy ∆H*(2.153-24.176 kJ/mole), entropy ∆S*(-197 -156 J/mole), and free Gibbs energy ∆G*(59.87-74.56 kJ/mole) before and after using the inhibitor, were also studied

    The impact of tubal ectopic pregnancy in Papua New Guinea - a retrospective case review

    Get PDF
    BACKGROUND: Ectopic pregnancy (EP) is an important cause of morbidity and mortality amongst women of reproductive age. Tubal EP is well described in industrialised countries, but less is known about its impact in low-resource countries, in particular in the South Pacific Region. METHODS: We undertook a retrospective review of women with tubal EP treated at a provincial referral hospital in coastal Papua New Guinea over a period of 56 months. Demographic and clinical variables were obtained from patients’ medical records and analysed. The institutional rate of tubal EP was calculated, and diagnosis and management reviewed. Potential risk factors for tubal EP were identified, and delays contributing to increased morbidity described. RESULTS: A total of 73 women had tubal EP. The institutional rate of tubal EP over the study period was 6.3 per 1,000 deliveries. There were no maternal deaths due to EP. The mean age of women was 31.5+/−5.7 years, 85% were parous, 67% were rural dwellers and 62% had a history of sub-fertility. The most commonly used diagnostic aid was culdocentesis. One third of women had clinical evidence of shock on arrival. All women with tubal EP were managed by open salpingectomy. Tubal rupture was confirmed for 48% of patients and was more common amongst rural dwellers. Forty-three percent of women had macroscopic evidence of pelvic infection. Two-thirds of patients received blood transfusions, and post-operative recovery lasted six days on average. Late presentation, lack of clinical suspicion, and delays with receiving appropriate treatments were observed. CONCLUSIONS: Tubal EP is a common gynaecological emergency in a referral hospital in coastal PNG, and causes significant morbidity, in particular amongst women residing in rural areas. Sexually transmitted infections are likely to represent the most important risk factor for tubal EP in PNG. Interventions to reduce the morbidity due to tubal EP include the prevention, detection and treatment of sexually transmitted infections, identification and reduction of barriers to prompt presentation, increasing health workers’ awareness of ectopic pregnancy, providing pregnancy test kits to rural health centres, and strengthening hospital blood transfusion services, including facilities for autotransfusion
    • …
    corecore