154 research outputs found

    Phase diagram of ferrimagnetic ladders with bond-alternation

    Full text link
    We study the phase diagram of a 2-leg bond-alternation spin-(1/2, 1) ladder for two different configurations using a quantum renormalization group approach. Although d-dimensional ferrimagnets show gapless behavior, we will explicitly show that the effect of the spin mixing and the bond-alternation can open the possibility for observing an energy gap. We show that the gapless phases of such systems can be equivalent to the 1-dimensional half-integer antiferroamgnets, besides the gapless ferrimagnetic phases. We therefore propose a phase transition between these two gapless phases that can be seen in the parameter space.Comment: 5 pages and 3 ps figures, accepted in Phys. Rev.

    Optical spin transfer in ferromagnetic semiconductors

    Get PDF
    Circularly polarized laser pulses that excite electron-hole pairs across the band gap of (III,Mn)V ferromagnetic semiconductors can be used to manipulate and to study collective magnetization dynamics. The initial spin orientation of a photocarrier in a (III,V) semiconductors is determined by the polarization state of the laser. We show that the photocarrier spin can be irreversibly transferred to the collective magnetization, whose dynamics can consequently be flexibly controlled by suitably chosen laser pulses. As illustrations we demonstrate the feasibility of all optical ferromagnetic resonance and optical magnetization reorientation.Comment: 8 pages, 3 figure

    Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As

    Full text link
    We report on a theoretical study of dc transport coefficients in (Ga,Mn)As diluted magnetic semiconductor ferromagnets that accounts for quasiparticle scattering from ionized Mn2+^{2+} acceptors with a local moment S=5/2S=5/2 and from non-magnetic compensating defects. In metallic samples Boltzmann transport theory with Golden rule scattering rates accounts for the principle trends of the measured difference between resistances for magnetizations parallel and perpendicular to the current. We predict that the sign and magnitude of the anisotropic magnetoresistance can be changed by strain engineering or by altering chemical composition.Comment: 4 pages, 2 figure
    corecore