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Circularly polarized laser pulses that excite electron-hole pairs across the band gap of (III,Mn)V
ferromagnetic semiconductors can be used to manipulate and to study collective magnetization
dynamics. The initial spin orientation of a photocarrier in a (III,V) semiconductors is determined by
the polarization state of the laser. We show that the photocarrier spin can be irreversibly transferred
to the collective magnetization, whose dynamics can consequently be flexibly controlled by suitably
chosen laser pulses. As illustrations we demonstrate the feasibility of all optical ferromagnetic
resonance and optical magnetization reorientation.

PACS numbers:

I. INTRODUCTION

The collective magnetization dynamics of a single-
domain ferromagnet can be dramatically modified when
spin polarized quasiparticles are injected into the system.
For instance, in a metallic ferromagnet current-carrying,
non-equilibrium quasiparticles exert a torque on the col-
lective magnetization which, at sufficiently high current
densities, can produce a complete reversal of the magne-
tization orientation. This phenomenon, called spin trans-
fer (ST), was predicted by Slonczewski1 and Berger2 and
has been confirmed experimentally in ferromagnetic mul-
tilayer systems by a number of groups3. Although the mi-
croscopic mechanism is not completely settled and possi-
bly not absolutely universal, it is clear that ST in itiner-
ant electron ferromagnets is a consequence of irreversible
transfer of magnetization between non-equilibrium quasi-
particles and the collective magnetization. In ST, a spin-
polarized injection current provides a non-conservative
driving force which can either deliver or extract energy
from the collective magnetic degree of freedom.

(III,Mn)V ferromagnetic semiconductors like
GaAs:Mn combine ferromagnetism with familiar
semiconductor properties similar to those of the parent
semiconductor4. Most practical applications of GaAs
and other III-V compounds are related to their optical
properties. Unlike Si and Ge, III-V materials are
optically active and therefore respond strongly to a
laser field with a frequency close to the band gap. A
well known property of III-V semiconductors is optical
orientation5 in which a laser generates a population of
photocarriers strongly spin polarized along a direction
which depends on the polarization state of the laser
field. In this paper we predict that circularly polarized
laser pulses which excite spin polarized electron-hole
pairs across the bandgap of (III,Mn)V ferromagnets
can control the magnetization dynamics through the
spin transfer phenomenon. We outline a theory of
optical spin transfer in ferromagnetic semiconductors
and discuss some of the many possible applications of
this phenomenon. In particular, by numerically solving

Landau-Lifshitz equations that include a spin transfer
term, we show that laser pulses with suitably chosen
durations, intensities, and propagation directions enable
all-optical ferromagnetic resonance, and nanosecond
time scale switching between magnetic easy axes.

The rest of this paper is organized as follows. In section
II we briefly review aspects of the electronic structure of
(Ga,Mn)As relevant to our proposal. In section III we
present our theory of optical spin transfer, which adds to
the Landau Lifshitz equations (LLE) that describe col-
lective magnetization dynamic an additional term that
accounts for the irreversible exchange of angular momen-
tum with the photocarriers. In section IV we present re-
sults of the numerical solution of the extended LLE in
a number of different cases. In section V we discuss the
relationship between our proposal and some recent ex-
perimental results6,7. We have relegated a description
of some of the technical considerations that underly our
theory to appendices A and B.

FIG. 1: Schematic summary of optical spin transfer theory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16375304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

II. ELECTRONIC STRUCTURE OF
(GA,MN)AS

The Fermi energy of intrinsic GaAs lies in the mid-
dle of a gap of approximately 1.5 eV. GaAs can be doped
with up to 10 percent of Mn which, under suitable growth
conditions, replaces Ga. Substitutional Mn acts as a rel-
atively shallow single acceptor so that each Mn injects
one hole in the GaAs host. In most of the samples there
is some degree of compensation, due primarily to inter-
stitial Mn ions, so that the hole density is smaller than
density of magnetic impurities. Samples in which the
density of interstitial Mn ions has been reduced by an-
nealing tend to have higher carrier densities and metallic
transport properties, indicating that the holes are delo-
calized. These relatively itinerant holes interact via a
Kondo-like interaction with the localized d orbitals of
the Mn ions. There is broad agreement that ferromag-
netism is due to carrier mediated interactions between
the Mn ions. Strong magneto-transport effects8 and tun-
neling magnetoresistance9 support this point of view and
demonstrate that the valence band holes are strongly cou-
pled to the Mn ions.

The physics of samples with metallic-like conductiv-
ity can be reasonably10 described with a simple mean
field theory: the valence band of the parent compound

(GaAs), described with a ~k · ~p Hamiltonian, is occupied
by holes which interact with an effective field that is
the mean field representation of the exchange interac-
tion with the array of Mn atoms11,12,13. Ferromagnetism
occurs at low temperatures, when the paramagnetic en-
ergy gained by the degenerate Fermi gas formed by the
holes is larger than the reduction of entropy of the mag-
netic atoms entailed by the spontaneous order. Impor-
tantly, the spin orbit interaction is properly included in

the ~k · ~p Hamiltonian. As a result of spin orbit inter-

action, both the ~k · ~p valence bands ǫν(~k) and the to-

tal energy E
(

~M
)

depend on the relative orientation of

the collective magnetization ~M and the crystallographic
axis. This magnetic anisotropy compares well with ex-
perimetal results14.

The conduction band does not play an important role
in equilibrium (Ga,Mn)As and remains empty unless
electrons are generated there by optical excitation, as
is the case of our proposal. We describe the bottom of
the conduction band with a simple parabolic band model.
The mean field spin splitting is given by ∆c ≡ JsdcMn,
where Jsd is the exchange coupling between the conduc-
tion band electrons and the Mn d electrons and cMn is
the density of Mn ions. To the best of our knowledge, the
conduction band exchange coupling constant Jsd has not
been measured experimentally in (Ga,Mn)As. In anal-
ogy with the case of (II,Mn)VI15, we assume that Jsd is
five times smaller than Jpd, the exchange interaction be-
tween valence band holes and Mn ions. The latter can be
inferred from transport and magneto-optics experiments.
We take Jsd = 11eV Å3. (Our conclusions do not depend

strongly on the numerical value of Jsd.)

III. OPTICAL SPIN TRANSFER

In equilibrium, the magnetization ~M of a sample of
(Ga,Mn)As with a density p of holes, lies along an easy

axis in order to minimize E
(

~M
)

. In this paper we study

the dynamics of ~M when the material is photoexcited so
that a density of extra holes, δp and extra conduction
band electrons δn = δp is injected in the system. We only
consider the situation when δn = δp << p. The initial
spin orientation of these photocarriers, n̂, is determined
by the polarization state of the laser, according to the
selection rules of the material which depend ultimately
on an interplay between angular momentum conservation
and spin-orbit interactions. A circularly polarized laser
propagating along the ẑ-direction with an energy equal
to the band-gap creates photocarriers that are strongly
spin polarized along the propagation direction5.

The Mn spin dynamics of (III,Mn)V ferromagnetic
semiconductors differs qualitatively from that of the
paramagnetic (II,Mn)VI semiconductors which have been
studied extensively16,17 in interesting earlier work. In
that case, laser pulses have been used both to trigger and
to detect16,17 the dynamics of substantially independent
magnetic moments. In ferromagnets, moments behave
collectively and many elegant and technologically impor-
tant properties follow from the, often complex, behav-
ior of the magnetization-orientation collective coordinate.
In the case of (III,Mn)V ferromagnets18 the underlying
magnetic degrees of freedom are Mn ion S = 5/2 local
moments and holes in the semiconductor valence band10.
The magnetization-orientation dynamics is governed by
the following equation:

∂ ~M
∂t

= ~M×
[

−γ
∂E( ~M)

∂ ~M
+ ~Γdamping + ~ΓST

]

(1)

where E( ~M) specifies the relationship between energy

and magnetization, ~M. The dissipative processes by
which the collective coordinate relaxes towards the min-
imum of E( ~M) are represented by ~Γdamping. Choosing
the Landau-Lifshitz form, the damping term is given by

~Γdamping = − γα

Ms

~M× δE( ~M)

δ ~M

where Ms = | ~M| and γ = e
mc is the gyromagnetic ratio.

We define the unit vector ~Ω ≡ ~M
Ms

; note that since d( ~M·
~M)/dt = 0, these equations attempt to describe only the

dynamics of the magnetization orientation ~Ω.
In this work the irreversible transfer of angular mo-

mentum and energy from non-equilibrium quasiparticles

to the collective magnetization is described by ~ΓST. The

expression that we use for ~ΓST is based on the following
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physical picture. After photon absorption, the photocar-
riers are spin polarized along the direction n̂ determined
by the polarization state and the propagation direction
of the laser (figure 1-b). Due to their mutual exchange
interaction18, the spin of a photocarrier and the collec-
tive magnetization will then precess around each other
at rates defined by their mean-field interactions. The
precession involves periodic reversible transfer of angular
momentum back and forth between the collective magne-
tization and an individual photocarriers, which can be de-
scribed either classically or quantum mechanically. The
precession is abruptly interrupted by one of the following
two processes: spontaneous emission of a photon (photo-
carrier recombination) or photocarrier spin decoherence.
As we discuss below, the latter process will usually in-
volve spontaneous emission of a spin wave. Importantly,
the distribution of values for the component of the pho-

tocarrier spin perpendicular to ~M, n̂⊥, is uniform at the
instant of decay, provided that the decay time is much
larger than the precession time (see figure 1-c). There-
fore, when summing over all the photocarriers, there is a
net loss of quasiparticle spin along the n̂⊥ direction which
must be transferred to the collective magnetization be-
cause of the conservation of total spin during precession1.
Therefore, the stochastic nature of the spin decoherence
event, whether due to carrier recombination or spin wave
emission, leads to an irreversible spin transfer from the
photocarriers to the collective magnetization. This argu-
ment implies that:

~ΓST =
µBP(t)

M2
s

~n × ~M (2)

where P(t) is the rate per unit volume at which quasi-
particles are injected into the system and µB is the Bohr
magneton. In appendix A we present a mathematical
derivation of eq. (2). A term similar to eq. (2) has been
proposed previously on the basis of similar arguments in
the context of current induced magnetization switching
in ferromagnetic metals1,2.

The argument leading to Eq. (2) assumes that the pho-
tocarriers precess many times around the effective field
created by the collective magnetization before they loose
spin coherence. The major source of spin decoherence
in the case of the electrons in the conduction band in
non magnetic p-doped GaAs at low temperatures is ex-
change with holes19. The measured20 electron spin re-
laxation time in p-doped samples is well above 100 ps
at low temperatures. To the best of our knowledge, the
conduction band electron spin relaxation rate has not
been measured in(Ga,Mn)As. Using the standard mas-
ter equation approach with Fermi Golden rule rates we
have derived an expression for the conduction band spin
decoherence time. The details are outlined in appendix
B. Whereas the static component of the magnetic en-
vironment produces the conduction band spin splitting,
∆c, the fluctuating magnetic environment provided by
the spin waves of the Mn-hole system results in the fol-

lowing T2:

1

T2
=

(

1 + e−βL∆c
)

S
J2

sd(kBTe)
2

4π2~

[

2m

π~2D

]3/2

F(y) (3)

where

F(y) =

∫ ∞

0

√
xe−x

∫ zD

0

√

x + y − Te

TL
z ×

×
√

Te

TL
z

[

1 + nB

(

Te

TL
z

)]

dzdx (4)

In this expression we distinguish between the Mn tem-
perature TL and the temperature of the photocarriers,
Te, which is taken as a parameter to describe their ex-
cess energy. Here D ≡ 2A

cMnS is the spin stiffness21 in

the spin wave spectrum Ω = Dq2, m∗ is the conduction

band effective mass, zD = βk2
B

(

6π2cMn

)2/3
is the nor-

malized spin wave Debye cutoff22 and y = ∆c/Te. Since
and y >> z the argument of the square root in eq. (4)
is always positive. The physical mechanisms underlying
equation (3) are the spontaneous emission and absorp-
tion of spin waves with the corresponding spin flip of the
conduction band electron. Since the spin wave gap is ne-
glected in the derivation of equation (3), T2 is probably
somewhat underestimated. T2 is a decreasing function
of the hot carrier temperature Te. If we take S = 2.5,
cMn =1.1×1021 cm−3 (x=0.05), A = 0.2pJ m−1 (accord-
ing to reference 21), m∗ = 0.067,TL = 1meV and Jsd =
11 eV Å3, then we have T2 ≃ 20 ps for Te = 100 meV,
and even longer T2 for smaller values of Te. This time
is long compared to the precession period for photoelec-
trons which is ∼ h/JsdScMn ∼ 0.15 ps, where cMn is the
Mn concentration, and Jsd is the exchange interaction be-
tween Mn moments and conduction band electrons. The
photocarrier spin-orientation randomization assumption
that underlies Eq. (2) is therefore valid for electrons in
the conduction band. Radiative recombination time, by
which one photo-electron and one photo-hole annihilate
by emission of a photon, lies in the range between 2 and
25 ps6,7. We expect that both carrier recombination and
spin wave emission will contribute significantly to the
spin decay of photoelectrons.

Unlike photoelectrons, photoholes experience a strong

momentum-dependent effective field 1
3∆so

~L, due to their
spin-orbit interaction with the atomic orbital angular

momentum, ~L. In GaAs, for example, ∆so = 340
meV, larger than the valence band exchange mean field,
∆pd = SJpdcMn. Scattering between Bloch states causes
~L to fluctuate strongly so that the valence band spin de-
coherence time is on the same order as the momentum
scattering time23. In (Ga,Mn)As the momentum scatter-
ing time is of the order of 10 femtoseconds24, shorter than
or comparable to the band quasiparticle spin-precession
time ∼ h/∆pd ∼ 30 fs. These numerical values in com-
bination with our picture of optical spin transfer suggest
that the contribution of photo-holes will be strongly sup-
pressed. We neglect this contribution in the rest of the
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paper. The effect of spin orbit interaction in spin trans-
fer has been studied theoretically by two of us28, for a
model without orbital degeneracy. We believe that this
issue calls for further work, especially in the light of re-
cent experiments in which current driven magnetization
switching is achieved at a much smaller than expected
current density29.

IV. OPTICAL SPIN TRANSFER DYNAMICS IN
(GA,MN)AS

In the remainder of this paper we explore the col-
lective magnetization dynamics of (Ga,Mn)As driven
by polarized laser pulses, as described by Landau Lif-
shitz equations that include the spin transfer term
(eq. 1). In the model of valance-band-hole mediated
ferromagnetism11,12, the magnetic anisotropy is due to
the spin orbit interaction of the holes and is sensitive
to lattice mismatch strains. The anisotropy energies we
consider can be fit to the form

E(~Ω) = k1Ω
2
xΩ2

y + k2Ω
2
z − k3Ω

4
z + k4 (ΩxΩyΩz)

2 + kuΩ2
x

The uniaxial term proportional to k2 is a consequence of
lattice-matching strains and favors magnetization orien-
tations in the x̂ − ŷ plane, while the much weaker uni-
axial term proportional to ku is obtained by fitting to
recent experiments14 which demonstrate that the kine-
matics of the MBE growth process lowers the symme-
try of the layer-by-layer growth planes in a way which
influences the magnetic anisotropy energy. The follow-
ing set of values k1 = 0.025 meV/nm3, (k2, k3, k4, ku) =
1.34, 1.05,−1.25, 0.08) in units of k1 follow from the nu-
merical mean field calculation12, for (Ga0.95,Mn0.05)As
with a density of holes p = 3.5 1020 cm−3. These values
are in good agreement with the experimental results re-
ported by Tang et al.14 and can be taken as typical for
GaAsMn. We have verified that the results reported be-
low are robust with respect to modifications in the func-

tional E(~Ω).

Writing E(~Ω) = k1e0(~Ω), where e0 is dimensionless, we

define a typical time scale t0 ≡
∣

∣

∣

Ms

γk1

∣

∣

∣
∼ 30 ps for a Mn

fraction x=0.05. Defining the dimensionless quantities

t̂ = t
t0

and P̂ ≡ P(t̂)t0
ScMn

, the Landau Lifshitz equation can
then be written as

d~Ω

dt̂
= ~Ω ×

[

−∂e0

∂~Ω
− α

[

~Ω × ∂e0

∂~Ω

]

+ P̂(t̂)
[

n̂ × ~Ω
]

]

(5)

where the damping coefficient α, estimated using the
ferromagnetic resonance experiments of reference25, is
α ≃ 0.07. We use this value for the calculations that
follow, although our conclusions are not particularly sen-
sitive to this parameter. We assume that the magneti-

zation lies along the ~Ω0 = x̂ easy axis before the laser
pulse is applied and consider two different situations: i)
Weak circularly polarized laser pulses which propagate

along ẑ and initiate a free induction decay from which a
ferromagnetic resonance spectrum can be obtained with-
out the need for a time dependent magnetic field and ii)
Intense circularly polarized laser pulses, propagating ei-

ther parallel or perpendicular to ~Ω0 which drive ~Ω away
from x̂ and switch the magnetization direction.

A. All optical Ferromagnetic Resonance

We first discuss the possibility of performing a time
resolved pump and probe experiment which yields in-
formation similar to that of a ferromagnetic resonance
(FMR) experiment. We refer to this as all optical FMR.
In standard FMR experiments, the dynamics of the mag-
netization is triggered by an AC magnetic field, whereas
detection of the magnetization dynamics can be done us-
ing different methods, including optical ones. Here, we
show that the motion of the collective magnetization can
be both triggered and detected with pump and probe
laser pulses. The pump laser, propagating in the ẑ direc-
tion, is circularly polarized, so that the photocarriers are
spin polarized perpendicular to the equilibrium magneti-
zation (x̂). Because of the spin transfer term, the mag-
netization can be tilted away from x̂ (see inset of figure
2) by the pulse. The energy per pulse considered in fig-
ure 2 is E = 0.1mJ cm−2 and the laser duration is 3ps,
corresponding to a laser power of W = 33MW cm−2.
Very similar results are obtained for pump pulse widths
between 0.2 and 20 picoseconds, keeping the laser power
constant: it is primarily the laser power that controls the
the spin transfer effect on the magnetization, as implied
by equation (2).

The subsequent free induction decay process can be
probed by measuring the Faraday rotation of a second lin-
early polarized probe laser pulse. The Faraday rotation
is proportional to Mz(t), which17 oscillates at the FMR
frequency. In Fig. 2-b we show a normalized Fourier
transform of Mz(t) for two different values of the damp-
ing constant, α. It is apparent from Figure 2-b, both
the precession frequency, ω0 and the linewidth ∆ω, can
obtained from such a procedure.

Although the experimental procedure we propose is
similar to the one used in reference17 for diluted para-
magnetic II-VI-Mn, the spin transfer mechanism is quite
different. In the case of II-VI-Mn quantum wells, the spin
of the photoinduced heavy holes points along the growth
direction, creating a transient effective field Jpd pholes ẑ
which tilts the Mn spins away from their equilibrium
orientation17,27, determined by an external magnetic field
along x̂. After recombination the transient field is absent
and the Mn spins follow free induction decay dynamics.

B. Laser induced magnetization switching

In the case of all optical FMR, the magnetization ori-
entation is weakly perturbed. By increasing the laser
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FIG. 2: All optical FMR signal. The energy per laser pulse
for the illustrated simulation is E = 0.1mJ cm

−2 and the
laser duration is tL = 3 ps. The density of photocarriers
corresponding those parameters and a extinction coefficient
αL = 104 cm−126 and recombination time tR = 2ps6 is 1.2 ×
1018 cm−3. Similar results are obtained for pump pulse widths
between 0.2 and 20 picoseconds; it is primarily the laser power
that determines the spin transfer effect on the magnetization,
as implied by equation (2).

pulse intensity, the departure from the initial equilibrium

orientation can be made large enough to drive ~Ω to a dif-
ferent easy axis. We consider two geometries the spin of

the photocarrier lying (a) perpendicular to ~Ω0, and (b)

parallel to ~Ω0. These situations were also distinguished
by Slonczewski1. For that case the geometry (a) the mag-
netization develops a precession around the easy axis. In
the geometry (b) the effect of the spin transfer is to en-

hance or reduce the damping of the departures of ~Ω from
~Ω0. For a sufficiently high flux of non-equilibrium quasi-
particles, the rate at which non-equilibrium quasiparti-
cles deliver energy into the collective magnetization can
overcome the rate at which the latter dissipates energy.

When this happens, ~Ω departs from ~Ω0 and, depending

on E(~Ω), it will evolve to a different easy axis orientation.
We have explored the two geometries using laser pulses.
A pulse that propagates perpendicular to the magneti-

zation drives ~Ω from x̂. It is possible to tailor the laser
pulse energy and duration so as to control which easy
direction the magnetization decays to. In particular, the
laser pulse can produce switching. In figure 3 we show
an example of this. In the case of photocarriers injected

with spin parallel to ~Ω0, we have verified that the laser
can control the rate at which the collective magnetization
decays towards equilibrium. The damping can be made
arbitrarily large, for lasers propagating anti-parallel to
the magnetization, or arbitrarily small for lasers propa-
gating parallel to the magnetization.

V. DISCUSSION

Ferromagnetic order of the microscopic degrees of free-
dom in (Ga,Mn)As, Mn d electrons and valence band
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FIG. 3: Switching in the perpendicular configuration. Ini-
tially, the magnetization is pointing along x̂. The sample is
excited with a laser pulse of duration tL = 3 ps and energy
density E = 4 mJ/cm−2. The density of photocarriers is
5× 1019

cm
−3.

holes, is described with the order parameter ~M. In equi-

librium, ~M lies along some easy axis. An external per-
turbation can trigger the motion of the order parameter,
as described by the Landau Lifshitz equations. In this
paper we describe a new type of external perturbation,
the optical injection of photocarriers taht are polarized
along a direction n̂ different from the orientation of the

collective magnetization ~M. Our proposal takes advan-
tage of the selection rules for inter-band optical transi-
tions in (II,V) semiconductors. Provided that the spin
coherence time of the photocarriers is much longer than
the precession time, we predict a spin transfer (c.f. 2)
term in the LL equation. The spin-coherence time re-
quirement is clearly met for conduction band electrons,
while the situation for valence band holes is less clear
and calls for further work. Numerical solutions of the
LL equations with the spin transfer term show that the
magnetization dynamics in (Ga,Mn)As can be controlled
with laser pulses.

We now discuss the extent to which our theory can
account for experiments recently reported by Oiwa et
al.7, in which the magnetization of a GaAs:Mn film ex-
cited by laser pulses of 120 fs duration and power below
5×1012 photons/cm2. For a central photon energy of
1.579 eV, the laser power per pulse is approaximately
6MW/cm2, comparable with the simulation of figure 2.
Apart from the fact that both the experiment and our
theory describe the departure of the magnetization from
the equilibrium configuration induced by spin polarized
photocarriers, there is a number of differences between
the results of our model and those observed experimen-
tally. The Kerr rotation signal reported by Oiwa et al.7

is an exponentially decaying function with a time decay
constant of less than 50 ps in contrast with our figure 2,
in which Mz is an oscillating function whose amplitude
decays in a time scale of 2000 ps. The Kerr signal ob-
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served experimentally is overdamped, the decay constant
is smaller than the precession period. In order to have
an overdamped behaviour in our simulations, we would
need to take a Gilbert damping coefficient of α ≃ 5,
two orders of magnitude larger than the value reported
experimentally25 At a more quantitative level, Oiwa et
al.7 claim that each photo-hole is able to rotate 100 Mn
spins in the case GaMnAs excited with laser pulses and
as much as 106 Mn spins in the case of cw experiments6.
In our theory angular momentum is exchanged between
photocarriers and Mn, and one photocarrier could not
flip more than one Mn spin. We believe that, in order to
account for these experimental results, a different physi-
cal mechanism which involves other degrees of freedom,
possibly nuclear spins valence band hole angular momen-
tum, might be needed.

In summary, we have proposed the possibility of con-
trolling the magnetization dynamics of (III,Mn)V ferro-
magnetic semiconductors by means of laser pulses. Our
proposal is based on an optical spin transfer effect in
which angular momentum is transferred from the laser
to the collective spin magnetization by optically oriented
photocarriers. We have argued that the efficiency in the
spin transfer is close to one in the case of the photo-
electrons, but smaller in the case of photoholes because
of their rapid spin decoherence. Finally, we have pro-
posed pump and probe experiments which can achieve
all optical FMR and magnetization switching on ns time
scales.

This work has been supported by the Welch Founda-
tion and by the Office of Naval Research under grant
N000140010951, MAT2003-08109-C02-01, Ramón y Ca-
jal Program (MCyT, Spain) and UA/GRE03-14. This
work has been partly funded by FEDER funds.

APPENDIX A: DERIVATION OF THE SPIN
TRANSFER TERM

Here we derive an expression for the influence of the
photo-carrier spins on the dynamics of the collective mag-
netization. The Mn ion local moments see the conduction
electrons through their mean-field interaction with its
spin-density. At each instant in time Ω̂ precesses around
an effective field with a photocarrier contribution J~s:

Ms

µB

dΩ̂

dt

∣

∣

∣

∣

∣

pc

=
(

Ω̂ × J~s
)

. (A1)

The optical spin-transfer torque is specified by the time-
dependent spin density which satisfies

d~s

dt
= −JΩ̂ × ~s + Pn̂ − ~s

τ
(A2)

Here J is the exchange energy between the quasiparticle
and the collective magnetization, τ is the photo-carrier
spin relaxation time, n̂ is the initial spin polarization of
the photo-carrier, and P is the photo-carrier generation

rate, as defined in section III. We look for solutions of
the form:

~s(t) = e−t/τ~v(t) + ~s0 (A3)

where ~v(t) satisfies~̇v(t) = JΩ̂ × ~v. It follows that

~s0 + ξΩ̂ × ~s0 = Pn̂ (A4)

where ξ ≡ Jτ is the dimensionless (taking ~ = 1) ratio
between the photo-carrier decay time and precession pe-
riod.Equation (A4) can be written as a matrix equation

A~s0 = τPn̂

where Aij = δij + ξǫijkΩk. ~s0 = A−1τPn̂ where

A−1
ij =

1

1 + ξ2

(

δij + ξ2ΩiΩj − ξǫijkΩk

)

. (A5)

Since ξ >> 1 for conduction band photo-carriers we can
drop O( 1

ξ2 ) terms to obtain:

~s0 = τP
(

Ω̂ · n̂
)

Ω̂ +
P
J

.n̂ × Ω̂ (A6)

Because of the high precession rate of the photo-carriers,
the precessing contribution proportional to ~v(t)e−t/τ is
unimportant even for t shorter than τ . Therefore, com-
bining equations (A1,A3,A4,A6) we find that the contri-
bution of the photocarriers to the collective magnetiza-
tion dynamics is

Ms

µB

dΩ̂

dt

∣

∣

∣

∣

∣

pc

= PΩ̂ ×
(

n̂ × Ω̂
)

. (A7)

which leads to eq. (2). This contribution corresponds to
the exchange field from the portion of the injected spin-
density that is perpendicular to the magnetization. Note
that in equation A4 we might have distinquished lon-
gitudinal and transverse spin-relaxation rates; this dis-
tinction would not have mattered in the end, essentially
because only the transverse component produces a spin
torque. This analysis leads to the same conclusion as the
qualitative discussion in the main text, which appears
superficially to follow a different line. The difference is
simply one of bookkeeping. In this appendix we consider
the photocarrier spin density at a given point in space
and time, instead of following the history of a given pho-
tocarrier from the moment of generation to spin-decay.

APPENDIX B: CALCULATION OF THE
CONDUCTION BAND SPIN DECOHERENCE

TIME

In this appendix we outline the calculation of the con-
duction band spin decoherence time T2, which is done in
the framework of ’system plus reservoir’ master of equa-
tion (ME) approach30. The system is the conduction
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band electron spin and the reservoir is formed by the
spin waves of the Mn-hole system the orbital degrees of
freedom of the conduction band electron. The Hamilto-
nian reads:

Hcond = H0s + H0r + Vsr,

H0s =
∆c

2
~σ · ~M0

H0r =
p2

2m
+

∑

q

ω(q)b†qb
†
q

Vsr =
Jsd

2

∑

I

δ
(

~r − ~RI

)

~σ · δ ~M(~RI) (B1)

where ∆c = JsdcM . The spin fluctuations δ ~M(~RI) and
spin wave operators are related by22:

Mz(~R) ≡ S − b†(~R)b(~R)

δM(+)(~R) = M(+)(~R) ≃
√

2Sb(~R)

δM(−)(~R) = M(−)(~R) ≃
√

2Sb†(~R) (B2)

and

b(~R) ≡ 1√
N

∑

~q

ei~q·~Rb~q

b†(~R) ≡ 1√
N

∑

~q

ei~q·~Rb†−~q (B3)

The H0s term is the interaction of the spin with the
average magnetization which, in the master equation ap-
proach, is the ’system’ Hamiltonian. H0r accounts for the
electron kinetic energy and free spin waves. They are the
’reservoir’ Hamiltonian. The last term, the coupling be-
tween the system and the reservoir variables, comes from
the exchange coupling of the conduction electron with
the spin waves (spin fluctuations).

Using second order perturbation theory around H0s +
H0r it is possible to derive30 a closed set of ME for the re-
duced density matrix of the conduction band spin, includ-
ing the coupling with the reservoir degrees of freedom to

second order in the exchange coupling. In this language,
the above Hamiltonian describes elementary processes in
which a spin wave is absorbed or emitted, and spin and
momentum are exchanged between the spin wave and the
photo-carrier. Let us denote by

Γσikiswi,σf ,kf ,swf
=

2π

~
|Vif |2δ(Ei − Ef ) (B4)

the Fermi Golden rule (FGR) transition rate for the
process in which the photo carrier spin goes from σi to
σf , the photocarrier momentum goes from ki to kf by
emission or absorption of a spin wave. We now define

Γσi,σf
≡

∑

ki,swi

P (ki)P (swi)
∑

kf,swf

Γσikiswi,σf ,kf ,swf

(B5)
where P (ki) and P (swi) are the equilibrium distribution
functions for the inital photocarrier momentum and spin
wave occupation respectively. Eq. (B5) involves both an
average over initial and sum over final reservoir states of
the Fermi Golden rule transition rates. It can be seen30

that the spin decoherence time is

1

T2
= Γ↑,↓ + Γ↓,↑ (B6)

since the so called non adiabatic contribution to T2 is
zero for Hamiltonian B1). After some work, the spin
wave emission rate reads:

Γ↑,↓ =
V

Z

J2
sd

~
2Sπ

∫

VD

d~q

(2π)3

∫

d~k

(2π)3

∫

d~k′

(2π)3
e−βǫk [1 + nB(Ω(q))] δ [ǫk − ǫk′ + ∆ − Ω] (B7)

and a similar expression can be derived for the spin wave
absorption rate. Here V is the volume of the sample, VD

is the Debye sphere and Z = V
√

π
8π2

[

2mkbT
~2

](3/2)
. Equa-

tion (3) is obtained from eq. (B7) after some extra
changes of variables.
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