1,326 research outputs found

    Quantum Chaos and Regularity in Ultracold Fermi Gases

    Full text link
    Quantum fluctuation of the energy is studied for an ultracold gas of interacting fermions trapped in a three-dimensional potential. Periodic-orbit theory is explored, and energy fluctuations are studied versus particle number for generic regular and chaotic systems, as well for a system defined by a harmonic confinement potential. Temperature effects on the energy fluctuations are investigated.Comment: 4 pages, 5 figure

    Palm distributions of wave characteristics in encountering seas

    Get PDF
    Distributions of wave characteristics of ocean waves, such as wave slope, waveheight or wavelength, are an important tool in a variety of oceanographic applications such as safety of ocean structures or in the study of ship stability, as will be the focus in this paper. We derive Palm distributions of several wave characteristics that can be related to steepness of waves for two different cases, namely for waves observed along a line at a fixed time point and for waves encountering a ship sailing on the ocean. The relation between the distributions obtained in the two cases is also given physical interpretation in terms of a ``Doppler shift'' that is related to the velocity of the ship and the velocities of the individual waves.Comment: Published in at http://dx.doi.org/10.1214/07-AAP480 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Calculation of the photoionization with de-excitation cross sections of He and helium-like ions

    Full text link
    We discuss the results of the calculation of the photoionization with de-excitation of excited He and helium-like ions Li+^{+} and B3+^{3+} at high but non-relativistic photon energies ω\omega . Several lower 1S^{1}S and 3S^{3}S states are considered. We present and analyze the ratios Rd+R_{d}^{+\ast} of the cross sections of photoionization with de-excitation, σ(d)+(ω)\sigma_{(d)}^{+\ast}(\omega), and of the photo-ionization with excitation, σ+(ω)\sigma ^{+\ast}(\omega). The dependence of Rd+R_{d}^{+\ast} on the excitation of the target object and the charge of its nucleus is presented. Apart to theoretical interest, results obtained can be verified using such long living excited state as 23S2^{3}S of He.Comment: 10 pages, 6 table

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    Mixed ab initio quantum mechanical and Monte Carlo calculations of secondary emission from SiO2 nanoclusters

    Full text link
    A mixed quantum mechanical and Monte Carlo method for calculating Auger spectra from nanoclusters is presented. The approach, based on a cluster method, consists of two steps. Ab initio quantum mechanical calculations are first performed to obtain accurate energy and probability distributions of the generated Auger electrons. In a second step, using the calculated line shape as electron source, the Monte Carlo method is used to simulate the effect of inelastic losses on the original Auger line shape. The resulting spectrum can be directly compared to 'as-acquired' experimental spectra, thus avoiding background subtraction or deconvolution procedures. As a case study, the O K-LL spectrum from solid SiO2 is considered. Spectra computed before or after the electron has traveled through the solid, i.e., unaffected or affected by extrinsic energy losses, are compared to the pertinent experimental spectra measured within our group. Both transition energies and relative intensities are well reproduced.Comment: 9 pageg, 5 figure

    Description of superdeformed nuclei in the interacting boson model

    Full text link
    The interacting boson model is extended to describe the spectroscopy of superdeformed bands. Microscopic structure of the model in the second minimum is discussed and superdeformed bosons are introduced as the new building blocks. Solutions of a quadrupole Hamiltonian are implemented through the 1/N1/N expansion method. Effects of the quadrupole parameters on dynamic moment of inertia and electric quadrupole transition rates are discussed and the results are used in a description of superdeformed bands in the Hg-Pb and Gd-Dy regions.Comment: 18 pages revtex, 9 figures available upon reques
    corecore