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PALM DISTRIBUTIONS OF WAVE CHARACTERISTICS

IN ENCOUNTERING SEAS

By Sofia Aberg,1 Igor Rychlik and M. Ross Leadbetter

Lund University, Lund University and University of North Carolina

Distributions of wave characteristics of ocean waves, such as wave
slope, waveheight or wavelength, are an important tool in a variety
of oceanographic applications such as safety of ocean structures or
in the study of ship stability, as will be the focus in this paper. We
derive Palm distributions of several wave characteristics that can be
related to steepness of waves for two different cases, namely for waves
observed along a line at a fixed time point and for waves encountering
a ship sailing on the ocean. The relation between the distributions
obtained in the two cases is also given physical interpretation in terms
of a “Doppler shift” that is related to the velocity of the ship and the
velocities of the individual waves.

1. Introduction. The study of wave characteristics such as crest height,
wavelength and wave slope is important in various ocean engineering ap-
plications. Examples can be found in the design of ocean structures, such
as oil platforms, or in the design of sea walls that should prevent cities, or
sometimes whole countries, from flooding. Another important application,
motivating this paper, is that of ship stability. Because high and steep waves
encountering a ship may cause structural damage and even capsize smaller
vessels, it is important to know the distribution of, for example, wavelength,
waveheight and wave slope of such waves. Based on these distributions, cap-
size probabilities can be computed and used as a risk measure for existing
vessels or as a tool in the design of new ones.

A sea surface can be seen as a sequence of apparent waves. By an apparent
wave is meant the part of the sea record between two consecutive upcrossings
of the still water level and the downcrossing in between these upcrossings is
called the center of the wave. The purpose of this paper is to derive exact

Received May 2006; revised June 2007.
1Supported by the Swedish Foundation for Strategic Research Grant A3 02:125.
AMS 2000 subject classifications. Primary 60G15; secondary 60K40.
Key words and phrases. Encountered waves, Gaussian process, level crossings, Palm

distribution, Rice’s formula, wave velocity.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Applied Probability,
2008, Vol. 18, No. 3, 1059–1084. This reprint differs from the original in
pagination and typographic detail.

1

http://arxiv.org/abs/0806.2718v1
http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP480
http://www.imstat.org
http://www.ams.org/msc/
http://www.imstat.org
http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP480


2 S. ABERG, I. RYCHLIK AND M. R. LEADBETTER

distributions of steepness related wave characteristics of the apparent waves
for two different cases. The first case, the spatial case, concerns properties
of the waves observed, in space, along a fixed line at a fixed time point
and the second case, the encountered case, involves properties of the waves
encountering a ship on the ocean. More precisely, the characteristics of those
waves that overtake a ship sailing with constant velocity along a straight
line will be investigated because such waves are considered as particularly
dangerous for ship stability.

Distributions of wave characteristics are defined as Palm distributions.
Such distributions are intimately related to level-crossings of the underlying
process; in our case representing the sea surface, and Rice’s formula proves
useful in their evaluation. Although the main result of this paper is the
derivation of several distributions for the two different cases stated above,
a nice by-product is that the relation between the two cases can be given
interpretation in terms of wave velocities. In physical terminology this can be
expressed as a Doppler shift and is caused by the fact that the sea surface is
observed by a moving observer—the ship. Due to this interpretation, similar
results can be expected in many other applications where the distribution
of moving objects, observed from a moving observer are studied. As an
example, the distribution of the size of the storms you will meet when sailing
will be related, by a Doppler shift, to the distribution of storm sizes that
can be observed from a satellite image.

The organization of this paper is as follows. First, the Gaussian sea model
used to evaluate the distributions for the wave characteristics is introduced.
Then it is shown how distributions defined by Palm distributions can be
computed by using generalized versions of Rice’s formula. After a short
section on wave velocities, the theory is exemplified by calculation of the
distribution of wave slope for spatial and encountered waves. Thereafter, a
more intricate example concerning waveheight and wavelength of apparent
waves is investigated, and finally, the derived distributions are evaluated
numerically for a unidirectional Gaussian sea.

2. Gaussian sea model. Let W (x, t) be the sea surface elevation at lo-
cation x and time t. Further denote its partial derivative on t by Wt(x, t)
and its first and second partial derivative on x by Wx(x, t) and Wxx(x, t),
respectively. Sometimes, when no misunderstanding can be made, the nota-
tion W (x) =W (x,0) is used. Throughout this paper, W (x, t) is modeled as
a zero mean, stationary Gaussian field with a directional spectrum having
spectral density S(ω, θ), where ω is an angular frequency and θ an angle rep-
resenting wave direction. These quantities satisfy ω > 0 and θ ∈ [0,2π]. For
sea waves such a parametrization of the spectral density is possible because
the angular frequency ω and the wave number κ are related by physical
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dispersion laws; see [4] for further reference. In particular, for deep water,

κ=
ω2

g
,(2.1)

where g is the gravitational constant. Writing ω = 2π/T and κ = 2π/L,
where T is the wave period and L the wavelength, the dispersion relation
can also be expressed in terms of periods and wavelengths, namely

L=
g

2π
T 2.

Due to the dispersion relation, we thus have the following relation between
the covariance function R(ξ, τ) = E[W (x, t)W (x+ξ, t+τ)] and the spectrum

R(ξ, τ) =

∫ ∞

0

∫ 2π

0
cos

(
ωτ +

ω2

g
ξ cos θ

)
S(ω, θ)dθ dω.(2.2)

Due to this relation variances and covariances of the process and its deriva-
tives can be expressed in terms of the spectral moments defined as

λij =

∫ ∞

0

∫ 2π

0
(κ(ω) cos θ)iωjS(ω, θ)dθ dω.(2.3)

Note that Var(W (0,0)) = R(0,0) = λ00, Var(Wx(0,0)) = −Rξξ(0,0) = λ20,
Var(Wt(0,0)) =−Rττ (0,0) = λ02 and Cov(Wx(0,0),Wt(0,0)) =−Rξτ (0,0) =
λ11.

3. Palm distributions and Rice’s formula. Let Nu
Z([0, T ]) be the number

of times that a process Z(t) of one parameter takes the value u in the
interval [0, T ], and let Nu

Z([0, T ],E) be the number of times the process
takes the value u and at the same time a statement E about the process,
its derivatives or another process, is satisfied. For example E could be the
statement “Zt(t)≤ z,” where Zt(t) is the derivative of Z(t). A Palm measure
is defined by the following ratio of intensities

P u
Z(E) =

E[Nu
Z([0,1],E)]

E[Nu
Z([0,1])]

,(3.1)

provided that the expected number of u-crossings, E[Nu
Z([0,1])], is finite. If

the process Z(t) is ergodic the intensities in (3.1) can be computed as sample
averages and, with probability one,

P u
Z(E) = lim

T→∞

Nu
Z([0, T ],E)

Nu
Z([0, T ])

.

Thus the Palm distribution has the empirical interpretation that it is the
long-term proportion of u-crossings by the process Z for which E is satisfied.
Note that a sufficient condition for ergodicity for a Gaussian process is that
it possesses a spectral density function; see [7], page 157.
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The intensities of crossings in (3.1) can be computed by using Rice’s
formula, first studied by [8] and [15]. In its simplest form, when Z is a zero-
mean stationary Gaussian process having almost surely differentiable sample
paths (realizations), it reads

E[Nu
Z([0,1])] =

1

π

√
Var(Zt(0))

Var(Z(0))
exp

(
− u2

2Var(Z(0))

)
.(3.2)

It can also be written on integral form, namely

E[Nu
Z([0,1])] =

∫ ∞

−∞
|z|fZt(0),Z(0)(z,u)dz

(3.3)
= E[|Zt(0)| | Z(0) = u]fZ(0)(u),

where fZt(0),Z(0) and fZ(0) are the densities of (Zt(0),Z(0)) and Z(0), respec-
tively. There is a vast literature on generalized versions of Rice’s formula; see,
for example, [1, 3, 5, 9, 18]. It turns out that the formulation (3.3) extends
in a natural way so that the intensity of crossings satisfying a statement
E can be computed. For example, if Z(t) has almost surely differentiable
sample paths and the event E satisfies certain regularity conditions, then
by [9], Lemma 7.5.2.

E[Nu
Z([0,1],E)] = E[|Zt(0)|1{E} | Z(0) = u]fZ(0)(u),(3.4)

where 1{·} is an indicator function. Thus Rice’s formula and generalizations
of it can be used to compute the Palm distribution (3.1). However, some
of the Palm distributions that we will consider include crossings by random
vector fields and therefore slightly more general forms of Rice’s formula are
required. The exact version that will be used is due to [13], Theorem 9.6,
which is a generalization of a theorem in [3].

Remark 3.1. Notation like E[|Zt(t)| | Z(t) = u]fZ(t)(u) is used exten-
sively throughout this paper. This should be interpreted in the sense of (3.3),
that is, as an integral. In particular, this requires that the joint density of
Zt(t) and Z(t) exists, so that (Zt(t),Z(t)) has a nondegenerate Gaussian
distribution. For higher dimensions the notation should be understood in a
analogous fashion.

Remark 3.2. It should be pointed out that the Gaussian assumption
is not necessary for Rice’s formula (3.3) to hold, although the conditions for
its validity in some cases can be quite intricate. However, if one is content
to use (3.3) for almost every u, rather than for each specific u, these condi-
tions simplify substantially. In [10] sufficient conditions for applying almost
everywhere results to fixed levels are given.
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4. Wave velocities. We will see that encountered distributions of wave
characteristics are closely related to velocities of the individual apparent
waves. Before defining velocities for these random waves we start with ve-
locities of deterministic waves, and in particular, study the implications of
the dispersion relation for the velocities of such waves.

Consider a deterministic cosine-wave c(x, t) with angular wave frequency
ω and wave number κ, namely

c(x, t) =A cos(ωt+ κx+ φ),

where A is an amplitude and φ a phase. For fixed t this is a wave in space
and for fixed x, a wave in time. If both t and x are varying it is a wave
traveling in the direction of the negative x-axis. The (phase) velocity of the
wave can be expressed as

V =−L

T
=−ω

κ
=− ct(x, t)

cx(x, t)
.

Note that the convention here is that a wave travels in the direction of
the positive x-axis if it has positive velocity and vice versa. Now for this
deterministic wave, ω and κ are linked by the dispersion relation (2.1) and
consequently

V =−ω

κ
=−

√
g

κ
=−

√
gL

2π
.(4.1)

Thus for ocean waves the dispersion relation implies that longer waves are
faster than shorter ones and, because the spatial slope of the wave at a zero-
crossing is proportional to κ, it also implies that waves with a high spatial
slope are slow.

Velocities for waves in irregular seas can be defined in a similar fashion,
and has been studied by [2, 4, 12, 14]. In this case, however, one is interested
in the velocities of the apparent waves rather than velocities of single har-
monics. Recall that an apparent wave is the part of the sea record between
two consecutive upcrossings of the still water level, and that the downcross-
ing in between is termed the center of the wave. Let xi > 0 be the positions
of centers of waves observed in W (x,0), that is, along the x-axis at time
zero. Due to the time variability of the sea surface, the centers change their
positions with time and at t = 0 the velocity Vi that the ith wave moves

at can be evaluated by means of Vi = −Wt(xi,0)
Wx(xi,0)

; see for example, [4]. The

variability of the velocities Vi will be described by the Palm distribution
defined as follows

FV (v) =
E[number of xi < 1 such that Vi ≤ v]

E[number of xi < 1]
.(4.2)
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For the Gaussian sea this becomes

FV (v) =
1

2

(
1 +

v− v̄√
(v− v̄)2 + σ2/λ20

)
, v̄ =−λ11

λ20
,

where σ2 = λ02 − λ2
11

λ20
and v̄ is the average wave velocity; see [14].

Remark 4.1. The velocity defined by V (x, y, t) = −Wt(x,y,t)
Wx(x,y,t)

, (x, y) ∈
R
2, can be seen as the local velocity field of a random, moving, surface. This

velocity is defined at any point (x, y) ∈ R
2 at any time t. For a thorough

study of different velocity concepts; see [4].

5. Explicit evaluation of Palm distributions. Earlier it was shown how
Palm distributions can be expressed by Rice’s formula, given by (3.3) and
(3.4). These formulas involve computation of multivariate normal expecta-
tions. Sometimes these have to be evaluated numerically, but in some cases
explicit forms can be given. One of these explicit cases will be investigated
next in some detail.

In the following lemma, a stationary Gaussian vector valued process (Z(t),
Zt(t), Y (t)) will be considered. In order to simplify notation, introduce the
random variables Y u and Zu

t having joint distribution function FY u,Zu
t
(y, z)

defined by the measure (3.1), namely

FY u,Zu
t
(y, z) = P (Y u ≤ y,Zu

t ≤ z) = P u
Z(Y (t)≤ y,Zt(t)≤ z).(5.1)

These random variables are a special case of the Slepian model process; see
[11] for a detailed presentation, and one may think of them as Y (t) and
Zt(t) observed at a randomly chosen u-crossing of the process Z(t). The
next lemma gives an explicit representation of these variables.

Lemma 5.1. Suppose that (Z(t),Zt(t), Y (t)) is a stationary Gaussian
vector valued process such that the density of (Z(t),Zt(t), Y (t)) exists. As-
sume further that the sample paths of Y (t) and Z(t) are a.s. continuous
and a.s. continuously differentiable, respectively. Let mZ = E(Z(t)), mY =
E(Y (t)) and let the covariance matrix Σ of the vector (Z(t),Zt(t), Y (t)) be
given by

Σ=




σ2
Z 0 σZσY ρZY

0 σ2
Zt

σZtσY ρZtY

σZσY ρZY σZtσY ρZtY σ2
Y


 .(5.2)

Then the variables Y u,Zu
t , with distribution defined by (5.1), have the fol-

lowing distributional representations:

Zu
t = σZtR, Y u =mu + σY (ρZtYR+

√
1− ρ2ZY − ρ2ZtY

U),(5.3)
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where U is standard normal and R is independent of U , with a double

Rayleigh distribution, that is, probability density f(r) = |r|
2 e

−r2/2. Here mu =
mY + σY

σZ
ρZY (u − mZ) and ρZY , ρZtY are correlations between Y (0) and

Z(0), Zt(0), respectively.

Proof. The proof is easy using the definition of Palm probability, Rice’s
formula (3.2) and (3.4) and the Gaussian regression formulas. �

This lemma thus shows that the derivative Zt at crossings has a Rayleigh
distribution as opposed to the derivative at any point, where it has a Gaus-
sian distribution. Furthermore, the distribution of another Gaussian process
Y , correlated with Z(t), can be represented as the sum of a Rayleigh and
Gaussian variable at the crossing point. The corresponding distributions, but
only observed at up- or downcrossings of Z(t), are easily obtained by using
the representation from Lemma 5.1. These distributions are summarized in
the following lemma.

Lemma 5.2. Let Zu
t | Zu

t > 0 denote the random variable obtained by
conditioning Zu

t on Zu
t > 0 and let Y u | Zu

t > 0, Zu
t | Zu

t < 0 and Y u | Zu
t < 0

be defined analogously. Using the same notation as in Lemma 5.1, we then
have the following distributional representations:

Zu
t | Zu

t > 0 = σZtR
+,

Y u | Zu
t > 0 =mu + σY (ρZtYR

+ +
√
1− ρ2ZY − ρ2ZtY

U)

and

Zu
t | Zu

t < 0 = σZtR
−,

Y u | Zu
t < 0 =mu + σY (ρZtY R

− +
√
1− ρ2ZY − ρ2ZtY

U),

where R+ and R−, both independent of U , have densities fR+(r) = re−r2/2,

r > 0, and fR−(r) =−re−r2/2, r < 0, respectively.

This result will be used to obtain explicit representations of the distribu-
tions of the slope observed at wave centers and encountered wave centers.
When evaluating such distributions, the following lemma that can be proved
by straightforward calculations is useful.

Lemma 5.3. Let U and R+ be independent standard Gaussian and Rayleigh
distributed variables. Then, for a > 0 and any x,

P (aU + bR+ > x) = Φ

(
−x

a

)
+ e−x2/(2σ2) · b

σ
Φ

(
x

σ

b

a

)
,

where σ =
√
a2 + b2 and Φ is the distribution function of a standard Gaus-

sian variable.
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6. Distribution of slope. Consider the sea surface W (x, t). In this section
the distribution of the slope Wx(x, t) will be computed, but only for values
of x and t chosen in a careful manner. The cases considered are:

1. Spatial case. Choose x to be points where the process W (x,0) has a
downcrossing of the zero level. This means that only values of x satisfying
W (x,0) = 0 and Wx(x,0)< 0 are chosen. In other words, x are locations
of the wave centers in W (·,0). These values of x and t= 0 will lead to a
Palm distribution of wave slopes observed at centers of waves.

2. Encountered case. Consider a ship sailing with constant velocity v on the
ocean. If it at time zero is at position x = 0, then the sea elevation at
the center of gravity at time t is W (vt, t). Choose t so that W (vt, t) = 0,
Wx(vt, t) < 0 and ∂

∂tW (vt, t) < 0, then t can be interpreted as a time
when the ship is overtaken by a wave center. Values of t chosen in this
manner, and x= vt, lead to a Palm distribution of wave slopes observed
at overtaking centers of waves.

Remark 6.1. By slope is here meant the water surface wave slope. This
should not be confused with the term velocity slope sometimes used in the
marine sciences.

6.1. Spatial distribution of slope. To derive the distribution of the slope
observed at centers of waves, we start by defining it by means of a Palm
distribution. Therefore, let xi ≥ 0 be the locations of the centers of waves,
that is, locations of the zero-downcrossings, in W (x,0). Each of these wave
centers can be associated with a slope Wx(xi,0) and the following Palm
distribution for the slope at centers of waves, denoted by F space

Wx
(w), can be

defined as

F space
Wx

(w)

=
E[number of xi ≤ 1 such that Wx(xi,0)≤w]

E[number of xi ≤ 1]
(6.1)

=
E[#{x ∈ [0,1];W (x,0) = 0,Wx(x,0)< 0,Wx(x,0)≤w}]

E[#{x ∈ [0,1];W (x,0) = 0,Wx(x,0)< 0}] ,

where the second equality holds because xi is a point of downcrossing of
W (x,0). Note that by ergodicity this distribution can be interpreted as

F space
Wx

(w) = lim
X→∞

number of xi <X such that Wx(xi,0)≤w

number of xi <X
,

that is, as the proportion of wave centers with associated slope less or equal
to w in an infinitely long realization of the process.

The following theorem gives an expression for the Palm distribution in
this case, and also states how it can be evaluated.
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Theorem 6.1. If W (x,0) is a stationary Gaussian process having a.s.
continuously differentiable sample paths then

F space
Wx

(w) =
E[Wx(0,0)

−
1{Wx(0,0)≤w} |W (0,0) = 0]fW (0,0)(0)

E[Wx(0,0)− |W (0,0) = 0]fW (0,0)(0)
,(6.2)

where x− =max(−x,0). Moreover

F space
Wx

(w) = P (
√
λ20R

− ≤w),(6.3)

where R− is a random variable having density fR−(r) =−re−r2/2, r < 0.

Proof. The first statement of the proof follows by applying the gener-
alized Rice’s formula (3.4) to the numerator and denominator of (6.1). For
the numerator, (3.4) is used with E = “Wx(x,0)< 0,Wx(x,0)≤w” and for
the denominator E = “Wx(x,0)< 0.”

To prove (6.3), Lemma 5.1 is used with Z =W (x,0). Then Zx =Wx(x,0),
and the Slepian variable Z0

x is the derivative Wx(x,0) observed at zero-
crossings of the process Z =W (x,0). Using the variable Z0

x, the distribution
for the slope Wx(x,0) observed at zero-downcrossings can be expressed as

F space
Wx

(w) = P (Z0
x ≤w | Z0

x < 0),

that is, as the distribution of the slope observed at zero-crossings conditional
on a negative slope at the crossing. Now (6.3) follows by Lemma 5.2. �

6.2. Encountered distribution of slope. Consider a vessel sailing along
the x-axis in the positive direction with constant speed v, having its center of
gravity at time zero at x= 0. Disregarding the interaction between the ship
and the waves, the sea elevation at the center of gravity of the ship is given
by Z(t) =W (vt, t). In the following, we will refer to Z(t) as the encountered
sea. Now let ti ≥ 0 be the times when the vessel is overtaken by a wave
center. Characteristic for such times is that the center of gravity is passing
through the still water level, Z(ti) = 0, the slope of the wave is negative,
Wx(vti, ti) < 0 and the encountered sea Z(t) has an upcrossing Zt(ti) > 0,
meaning that the center of wave is overtaking the ship. Because each ti
can be associated with the slope Wx(vti, ti) of the ith overtaking wave, the
following Palm distribution of the slope at overtaking waves, F enc

Wx
(w), say,

can be formed

F enc
Wx

(w)

=
E[number of ti ≤ 1 such that Wx(vti, ti)≤w]

E[number of ti ≤ 1]
(6.4)

=
E[#{t ∈ [0,1];Z(t) = 0,Zt(t)> 0,Wx(vt, t)< 0,Wx(vt, t)≤w}]

E[#{t ∈ [0,1];Z(t) = 0,Zt(t)> 0,Wx(vt, t)< 0}] ,
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where the second equality is due to the definition of ti. As before, the Palm
distribution can be interpreted in the following frequency fashion:

F enc
Wx

(w) = lim
T→∞

number of ti < T such that Wx(vti, ti)≤w

number of ti < T
.

Remark 6.2. Despite the similarities of expressions (6.1) and (6.4),
there is an important difference arising from the fact that crossings from
two different processes are counted, namely crossings from W (x,0) in the
spatial case and from W (vt, t) in the encountered case. From a statistical
point of view this means sampling from two different populations.

The following theorem, concerning the Palm distribution of slope for en-
countered waves, is an analogue to Theorem 6.1.

Theorem 6.2. Let W (x, t) be a stationary Gaussian process having a.s.
continuously differentiable sample paths. Then F enc

Wx
(w) can be expressed as

F enc
Wx

(w) =
E[Zt(0)

+
1{Wx(0,0)<0,Wx(0,0)≤w} | Z(0) = 0]fZ(0)(0)

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,(6.5)

where x+ =max(x,0). Moreover, F enc
Wx

(w) = 1 if w ≥ 0 and for w < 0

F enc
Wx

(w) =
2

1− ρZtY

(
Φ

(
w√

λ20(1− ρ2ZtY
)

)

(6.6)

− ρZtY e
−w2/(2λ20)Φ

(
ρZtY w√

λ20(1− ρ2ZtY
)

))
,

where Φ is the distribution function of a standard normal variable and

ρZtY =
vλ20 + λ11√

λ20(v2λ20 + 2vλ11 + λ02)
.(6.7)

Proof. Expression (6.5) follows, in a similar fashion as in the proof
of Theorem 6.1, by applying the generalized Rice’s formula (3.4) to the
numerator and denominator in (6.4).

To prove the second statement, identify the process Z(t) of Lemma 5.1
with the encountered process W (vt, t) and let Y (t) =Wx(vt, t). With this
choice of variables the covariance matrix, expressed in terms of spectral
moments defined by (2.3), becomes

Σ=



λ00 0 0
0 v2λ20 +2vλ11 + λ02 vλ20 + λ11

0 vλ20 + λ11 λ20


 .(6.8)
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In this setting Z0
t is the time derivative of the encountered process observed

at its zero-crossings, and Y 0 is the spatial slope observed at zero-crossings of
the encountered process. The distribution in (6.5), however, is the distribu-
tion of the spatial slope, but only at upcrossings of Z(t) such that the spatial
slope is negative. Using the variables Z0

t and Y 00 this can be expressed as

F enc
Wx

(w) = P (Y 0 ≤w | Z0
t > 0, Y 0 < 0)

=






P (Y 0 ≤w|Z0
t > 0)

P (Y 0 < 0|Z0
t > 0)

, w < 0,

1, w≥ 0.

Use of Lemma 5.2 now gives the following representation

F enc
Wx

(w) =





P (
√
λ20(ρZtYR

+ +
√
1− ρ2ZtY

U)≤w)

P (
√
λ20(ρZtYR

+ +
√
1− ρ2ZtY

U)< 0)
, w < 0,

1, w≥ 0,

with ρZtY given by (6.7). Thus the slope observed at an encountered over-
taking center of wave can be evaluated by computing probabilities for a sum
of a Rayleigh and a Gaussian random variable. Thus, (6.6) holds by Lemma
5.3. �

The interpretation of (6.5) is that it is the distribution of the slope of
the waves that overtake a ship sailing on the ocean. If a wave overtake the
ship, then it must necessarily be traveling at a higher speed than the ship.
Thus intuition suggests that in some way the distribution (6.5) should be
related to the relative velocities of the individual waves and the ship. The
exact relation is given by the following corollary, enabling us to interpret
the encountered distribution in terms of physical quantities.

Corollary 6.1. Let V = −Wt(0,0)/Wx(0,0) be the local velocity at
(x, t) = (0,0) and let v denote the velocity of the ship. Then

F enc
Wx

(w)
(6.9)

=
E[(V − v)+Wx(0,0)

−
1{Wx(0,0)≤w} |W (0,0) = 0]fW (0,0)(0)

E[(V − v)+Wx(0,0)− |W (0,0) = 0]fW (0,0)(0)
.

Proof. The assertion of the corollary follows easily from (6.5) due to
the following equality

Zt(0)
+
1{Wx(0,0)<0} = (vWx(0,0) +Wt(0,0))

+
1{Wx(0,0)<0}

= (Wx(0,0)(v − V ))+1{Wx(0,0)<0}
(6.10)

=Wx(0,0)
−(v− V )−

=Wx(0,0)
−(V − v)+,
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and the fact that Z(0) =W (0,0). �

The encountered distribution given by (6.5) or (6.9) differs from the cor-
responding spatial distribution (6.2) only by the term (V − v)+ that enters
into the expectation. Thus the spatial measure for slope can be transformed
to the encountered measure for slope by entering the velocity term (V −v)+.
The physical interpretation of this is that in the encountered approach not
every center of wave is sampled but only those with velocity greater than
the ship. The velocity factor is thus a consequence of the fact that the sea
surface is observed from a moving observer, that is, the ship. In physics, such
a phenomenon would be termed a Doppler shift. In the following, we will
see that the Doppler shift transformation of the distribution is not limited
to the distribution of the spatial slope. In fact, by the way the measures
are defined, it extends to all wave characteristics of overtaking encountered
waves.

7. Distribution of waveheight and half-wavelength. Let x1 be the loca-
tion of a wave center, that is, a downcrossing of the level zero, in W (x, t)
for some time t. Then x1 is characterized by the fact that W (x1, t) = 0 and
Wx(x1, t)< 0. Further, let x2 be the distance from the downcrossing x1 to
the closest local maximum before x1 so that Wx(x1 − x2, t) = 0, Wxx(x1 −
x2, t) < 0 and Wx(x1 − s, t) ≤ 0,∀s ∈ (0, x2). The latter condition guaran-
tees that this really is the closest maximum before x1. Similarly define x3
to be the distance from x1 to the closest local minimum after x1. Hence
Wx(x1 + x3, t) = 0, Wxx(x1 + x3, t) > 0 and Wx(x1 − s, t) ≤ 0,∀s ∈ (0, x3).
The definitions of x2 and x3 are shown in Figure 1. In the same figure, it is
also indicated that the notation H2 =W (x1 −x2, t) and H3 =W (x1 + x3, t)
will be used.

The task is to obtain an expression for the joint Palm distribution of the
distances from the wave center to the two closest local extrema and their
heights (x2, x3,H2,H3). As before two cases, corresponding to choosing wave
centers in two different ways, are considered. The first is a spatial case where
the Palm distribution is derived for wave centers in W (x,0) and the second
is an encountered case where the corresponding distribution is derived for
wave centers that overtake a ship.

By dividing the waveheight by the half-wavelength a measure of the steep-
ness at the wave center is obtained, hence motivating the study of these
quantities from a ship stability perspective.

7.1. Spatial distribution of heights and distances. In this section, an ex-
pression for the joint Palm distribution of (x2, x3,H2,H3) at downcrossings
in space is derived. To do so, we first define the appropriate Palm distribution
and then express it in terms of level crossings of the process W (x) =W (x,0).
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Let (x1)i ≥ 0 be positions of downcrossings in W (x). With each down-
crossing associate distances (x2, x3)i, say, to the closest local extrema and
form the following Palm distribution:

F space
x2,x3,H2,H3

(r, s, u,w)

=
E[number of (x1)i ≤ 1 such that (x2, x3,H2,H3)i ≤ (r, s, u,w)]

E[number of (x1)i ≤ 1]
.

In order to express the Palm distribution in terms of level crossings of the
process W, note that for each crossing (x1)i satisfying (x2, x3,H2,H3)i ≤
(r, s, u,w) the triple (x1, x2, x3) is characterized by the following properties:

(x1, x2, x3) ∈B, where the set B is defined by(A1)

B = {x ∈R
3; 0≤ x1 ≤ 1,0< x2 ≤ r,0<x3 ≤ s},

W (x1) =Wx(x1 − x2) =Wx(x1 + x3) = 0,(A2)

Wxx(x1 − x2)< 0,

Wxx(x1 + x3)> 0,(A3)

Wx(s)≤ 0 ∀s ∈ Γx, where Γx = {s ∈R;x1 − x2 ≤ s≤ x1 + x3},

W (x1 − x2)≤ u, W (x1 + x3)≤w.(A4)

Fig. 1. Definition of waveheights and distances. If x1 is the location of a downcrossing
in W (x, t) for fixed t, then x2 is defined to be the distance to the first local maximum before
x1 and similarly x3 is the distance to the first local minimum after x1. H2 is defined as
the sea elevation W (x1 − x2, t) and H3 as the sea elevation W (x1 + x3, t).
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Defining

ξ(x) = ξ(x1, x2, x3) = (W (x1),Wx(x1 − x2),Wx(x1 + x3))(7.1)

it thus holds that

F space
x2,x3,H2,H3

(r, s, u,w)
(7.2)

=
E[#{x ∈B; ξ(x) = 0, (A3) and (A4) satisfied}]

E[#{x1 ∈ [0,1];W (x1) = 0,Wx(x1)< 0}] .

The formulation (7.2) is suitable when it comes to computation of the ex-
pectations by means of Rice’s formula. In particular, the following theorem
states how the expectation in the numerator can be computed.

Theorem 7.1. Let W :R→ R be a stationary Gaussian process having
a.s. twice continuously differentiable sample paths. Assume that the spec-
trum of W has a continuous component and that the variance of the number
of zeros Wx(y) = 0, y ∈ [0,1] is finite. From W define a process ξ by the
relation (7.1) and a set B as in (A1). Furthermore, define a vector valued
process Y = (W,Wx,Wxx), a set Γx as in (A3) and let g(Y,x) be an indicator
function defined by

g(Y,x) = 1{Wx(s)≤0,∀s∈Γx}1{W (x1−x2)≤u}1{W (x1+x3)≤w}

× 1{Wxx(x1−x2)<0}1{Wxx(x1+x3)>0}.

Then, writing N ξ
0 (B,g) = #{x ∈B; ξ(x) = 0, g(Y,x) = 1} and det(ξx(x)) for

the Jacobian determinant of ξ(x),

E[N ξ
0 (B,g)] =

∫

B
E[|det(ξx(x))|g(Y,x) | ξ(x) = 0]fξ(x)(0)dx,

where both members are finite.

Proof. Let Bδ = {x ∈R
3; 0≤ x1 ≤ 1,0< x2 <

δ
2 ,0< x3 <

δ
2} and B−δ =

B\Bδ . Then
∑

x∈B∩ξ−1(0)

g(Y,x) =
∑

x∈Bδ∩ξ−1(0)

g(Y,x) +
∑

x∈B−δ∩ξ−1(0)

g(Y,x).(7.3)

On the set B−δ the distribution of ξ is nondegenerate, so that Theorem 9.6.
of [13] can be used. However, that theorem is only valid for a continuous
function g. Therefore, let {kn} and {hn} be sequences of continuous, mono-
tone functions such that kn(x) = 1 if x≤ 0, kn(x) = 0 if x > 1/n, hn(x) = 1 if
x≤−1/n and hn(x) = 0 if x > 0. It is easy to verify that kn(x)→ 1(−∞,0](x)
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and hn(x)→ 1(−∞,0)(x) as n→∞. Because kn(x) and hn(x) are continuous
for each n the theorem of [13] can be applied with

gn(Y,x) = kn

(
sup
s∈Γx

Wx(s)

)
· kn(W (x1 − x2)− u) · kn(W (x1 + x3)−w)

× hn(Wxx(x1 − x2)) · hn(−Wxx(x1 + x3)),

so that

E

[
∑

x∈B−δ∩ξ−1(0)

gn(Y,x)

]

(7.4)

=

∫

B−δ

E[|det(ξx(x))|gn(Y,x) | ξ(x) = 0]fξ(x)(0)dx,

where both members are finite. By dominated convergence arguments as
n→∞, (7.4) holds with gn replaced by g.

On Bδ, however, the distribution of ξ will degenerate, so the same theorem
cannot be used in this case. Instead, we show that the assumption of finite
variance of the number of zeros Wx(y) = 0, y ∈ [0,1], will force the expected
value of the first term on the right-hand side in (7.3) to go to zero as δ
approaches zero. To see that this is the case, first note that g is bounded by
1 so that

0≤ E

[
∑

x∈B∩ξ−1(0)

g(Y,x)

]
− E

[
∑

x∈B−δ∩ξ−1(0)

g(Y,x)

]
≤ E[N ξ

0 (Bδ)],

where N ξ
0 (Bδ) = #{x ∈ Bδ; ξ(x) = 0}. Because W is assumed to be an a.s.

differentiable Gaussian process, it follows that a.s. there are only finitely
many solutions to W (y) = 0 in any finite interval. Thus, with probability
one, {y ∈ [0,1];W (y) = 0} = {y1, . . . , yK}, where K = NW

0 ([0,1]) = #{y ∈
[0,1];W (y) = 0}. Using this fact and the stationarity of W , the following
inequality holds for 0< δ < 1:

E[N ξ
0 (Bδ)] = E

[
K∑

i=1

#{(x2, x3) ∈ [0, δ/2]2;Wx(yi − x2) =Wx(yi + x3) = 0}
]

=
∞∑

k=1

k∑

i=1

E[#{(x2, x3) ∈ (0, δ/2]2 ;

Wx(yi − x2) =Wx(yi + x3) = 0}]P (K = k)

=
∞∑

k=1

kE[#{(x2, x3) ∈ (0, δ/2]2;Wx(−x2) =Wx(x3) = 0}]P (K = k)

= E[#{(x2, x3) ∈ (0, δ/2]2;Wx(−x2) =Wx(x3) = 0}] · E[NW
0 ([0,1])]
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≤ E[#{(s, t) ∈ [0,1];

0< |t− s|< δ,Wx(s,0) =Wx(t,0) = 0}] · E[NW
0 ([0,1])].

Writing Nδ = #{(s, t) ∈ [0,1]; 0 < |t − s| < δ,Wx(s,0) = Wx(t,0) = 0} and
observing that

NWx
0 ([0,1])(NWx

0 ([0,1])− 1)

=#{(s, t) ∈ [0,1]; s 6= t,Wx(s,0) =Wx(t,0) = 0},

where NWx
0 ([0,1]) = #{y ∈ [0,1];Wx(y) = 0}, one can by using the formula

for the second factorial moment, given in [7], deduce that

E[Nδ ] =

∫

{(t,s)∈[0,1]2,0<|t−s|<δ}
h(s, t)dsdt,

where

h(s, t) = E[|Wxx(s)Wxx(t)| |Wx(s) =Wx(t) = 0]fWx(s),Wx(t)(0,0).

Because the assumption of finite variance of the number of zeros NWx
0 ([0,1])

implies that h(s, t) is integrable over the rectangle [0,1]2 it follows, by ab-
solute continuity, that limδ→0 E[Nδ] = 0. Thus

E

[
∑

x∈B∩ξ−1(0)

g(Y,x)

]

= lim
δ→0

∫

B−δ

E[|det(ξx(x))|g(Y,x) | ξ(x) = 0]fξ(x)(0)dx,

so that the final result follows by monotone convergence. �

Remark 7.1. In [13] the domain of definition of the function g is C(B,R)×
B, where C(B,R) is the class of continuous functions on B. However, the
arguments of that proof holds also in the case when the domain of definition
of g is C(B,Rn)×B, where C(B,Rn) is the class of continuous functions on
B taking values in R

n. The spaces C(B,R) and C(B,Rn) are, in both cases,
equipped with a uniform convergence norm.

Remark 7.2. Sufficient conditions for finite variance of the number of
zeros Wx(y) = 0, y ∈ [0,1], can be found in [7], page 209.

Using Theorem 7.1, we may state the main theorem for the Palm distri-
bution of (x2, x3,H2,H3) in the spatial case.
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Theorem 7.2. Let the assumptions and notation of Theorem 7.1 hold
and define

α(x) =Wx(x1)
−Wxx(x1 − x2)

−Wxx(x1 + x3)
+
1{Wx(s)≤0,∀s∈Γx}.(7.5)

Moreover, define a function hs(x, y) = hs(x1, x2, x3, y1, y2) by

hs(x, y) = E[α(x) | ξ(x) = 0,W (x1 − x2) = y1,W (x1 + x3) = y2]

× fξ(x),W (x1−x2),W (x1+x3)(0, y1, y2).

Then the Palm distribution F space
x2,x3,H2,H3

is given by

F space
x2,x3,H2,H3

(r, s, u,w)
(7.6)

=

∫ r
0

∫ s
0

∫ u
0

∫ w
−∞ hs(0, x2, x3, y1, y2)dy2 dy1 dx3 dx2

E[Wx(0)− |W (0) = 0]fW (0)(0)
,

having the density

f space
x2,x3,H2,H3

(r, s, u,w) =
hs(0, r, s, u,w)

E[Wx(0)− |W (0) = 0]fW (0)(0)
,(7.7)

where r, s, u > 0 and w < 0.

Proof. From the definition of the Palm distribution (7.2) and Theorem
7.1, the numerator in the statement (7.6) of the theorem follows due to sta-
tionarity in the first coordinate x1. The denominator follows by straightfor-
ward application of Rice’s formula; see the proof of Theorem 6.1. Moreover,
it follows from (7.6) that F space is absolutely continuous so that the density
exists and is given by (7.7). �

7.2. Encountered distribution of heights and distances. The correspond-
ing Palm distribution for overtaking encountered waves will now be consid-
ered, that is the distribution of distances and heights at times ti ≥ 0 when
a ship sailing with constant velocity v is overtaken by a wave center. To ob-
tain a Palm distribution each crossing ti is associated with some distances
denoted by (x2, x3)i. In this case (x2, x3)i are the distances from vti to the
closest local maximum and minimum before and after vti, respectively, in
the wave profile W (x, ti). Following now familiar steps, the following Palm
distribution can be formed

F enc
x2,x3,H2,H3

(r, s, u,w)

=
E[number of ti ≤ 1 such that (x2, x3,H2,H3)i ≤ (r, s, u,w)]

E[number of ti ≤ 1]
.
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Similarly to the previous case, the Palm distribution can be expressed in
terms of level crossings of the process W . More precisely, each time ti satis-
fying (x2, x3,H2,H3)i ≤ (r, s, u,w) has the following characteristics

(t, x2, x3) ∈B, where the set B is defined by
(C1)

B = {(t, x2, x3) ∈R
3; 0≤ t≤ 1,0< x2 ≤ r,0< x3 ≤ s},

W (vt, t) =Wx(vt− x2, t) =Wx(vt+ x3, t) = 0,(C2)

Wxx(vt− x2, t)< 0,

Wxx(vt+ x3, t)> 0,(C3)

Wx(s, t)≤ 0, ∀s ∈ Γtx, where Γtx = {s ∈R;vt− x2 ≤ s≤ vt+ x3}

W (vt− x2, t)≤ u, W (vt+ x3, t)≤w,(C4)

∂

∂t
W (vt, t) = vWx(vt, t) +Wt(vt, t)> 0.(C5)

Using these facts and by defining

η(x) = η(t, x2, x3) = (W (vt, t),Wx(vt− x2, t),Wx(vt+ x3, t))(7.8)

the Palm distribution can be written in the following form, suitable for our
purposes:

F enc
x2,x3,H2,H3

(r, s, u,w)
(7.9)

=
E[#{x ∈B;η(x) = 0, (C3), (C4) and (C5) satisfied}]

E[#{t ∈ [0,1];W (vt, t) = 0, (∂/∂t)W (vt, t)> 0,Wx(vt, t)< 0}] .

The following theorem is the encountered counterpart of Theorem 7.1.

Theorem 7.3. Let W :R2 →R be a stationary Gaussian process having
a.s. twice continuously differentiable sample paths. Assume that the spectrum
of W has a continuous component and that the variance of the number of
zeros Wx(y,0) = 0, y ∈ [0,1], is finite. From W define a process η by the
relation (7.8) and a set B as in (C1). Furthermore, define a vector valued
process Y = (W,Wx,Wxx), a set Γtx as in (C3) and let g(Y,x) be an indicator
function defined by

g(Y,x) = 1{Wx(s,t)≤0,∀s∈Γtx}1{W (vt−x2,t)≤u}1{W (vt+x3,t)≤w}

× 1{Wxx(vt−x2,t)<0}1{Wxx(vt+x3,t)>0}1{(∂/∂t)W (vt,t)>0}.

Then, writing Nη
0 (B,g) =#{x ∈B;η(x) = 0, g(Y,x) = 1},

E[Nη
0 (B,g)] =

∫

B
E[|det(ηx(x))|g(Y,x) | η(x) = 0]fη(x)(0)dx,

where both members are finite.
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The proof of the theorem follows the same lines as the proof of Theorem
7.1 and is, therefore, omitted.

We are now ready to state the main theorem for the distribution of (x2, x3,
H2,H3) in the encountered case. The proof is analogous to that of Theorem
7.2.

Theorem 7.4. Let the assumptions and notation of Theorem 7.3 hold.
Define

β(x) = Zt(t)
+Wxx(vt− x2, t)

−Wxx(vt+ x3, t)
+
1{Wx(s,t)≤0,∀s∈Γtx},(7.10)

where Z(t) =W (vt, t) is the encountered process.
Moreover, define a function he(x, y) = he(x1, x2, x3, y1, y2) by

he(x, y) = E[β(x) | η(x) = 0,W (vt− x2, t) = y1,W (vt+ x3, t) = y2]

× fη(x),W (vt−x2,t),W (vt+x3,t)(0, y1, y2).

Then the Palm distribution F enc
x2,x3,H2,H3

is given by

F enc
x2,x3,H2,H3

(r, s, u,w)
(7.11)

=

∫ r
0

∫ s
0

∫ u
0

∫ w
−∞ he(0, x2, x3, y1, y2)dy2 dy1 dx3 dx2

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,

having the density

f enc
x2,x3,H2,H3

(r, s, u,w)
(7.12)

=
he(0, r, s, u,w)

E[Zt(0)+1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)
,

where r, s, u > 0 and w < 0.

Earlier it was shown that the relation between spatial and encountered
distribution of slope could be given a physical interpretation in terms of wave
velocities. This is also true when it comes to the distribution of distances
and heights of the local extrema closest to a wave center. To see that this is
the case, consider the functions α(x1, x2, x3) and β(t, x2, x3) from Theorems
7.2 and 7.4, respectively. Due to a relation given in the proof of Corollary
6.1, namely Zt(0)

+
1{Wx(0,0)<0} =Wx(0,0)

−(V − v)+, the functions α and β
are related by

β(0, x2, x3) = (V − v)+α(0, x2, x3),

where V =−Wt(0,0)/Wx(0,0) is the wave velocity at the point (x, t) = (0,0).
Moreover, it is easy to see that η(0, x2, x3) = ξ(0, x2, x3) so that, in fact,
the functions he(0, x2, x3, y1, y2) and hs(0, x2, x3, y1, y2) only differ by the
velocity factor (V − v)+ that enters into the expectation in the expression
for hs.
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7.3. Evaluation of the densities. So far it has not been mentioned how
the densities (7.7) and (7.12) can be evaluated. It turns out that for both
densities the denominators can be computed explicitly. In the first, spatial,
case, this is straightforward and

E[Wx(0)
− |W (0) = 0]fW (0)(0) =

1

2π

√
λ20

λ00
.

For the denominator of the encountered density (7.12) this is not as easy.
However, [16] showed that by using certain symmetry properties of the Gaus-
sian distribution one has

E[Zt(0)
+
1{Wx(0,0)<0} | Z(0) = 0]fZ(0)(0)

(7.13)

=
1

4π

√
λ20

λ00

(√

v2 + 2v
λ11

λ20
+

λ02

λ20
− λ11

λ20
− v

)
,

whenever the spectral moments λ00, λ20, λ02 and λ11 are available.
For the numerators, on the other hand, there are no explicit formulas that

can be used. Fortunately, there are very efficient numerical routines. In par-
ticular routines from the Matlab toolbox WAFO (Wave Analysis for Fatigue
and Oceanography, available gratis at the web page
http://www.maths.lth.se/matstat/wafo/), custom made for this type of
calculations can be used; see [6]. However, before any computations can be
done, the infinite dimensional indicators in the expressions for the densi-
ties must be approximated by an indicator on a finite set of grid points. In
both cases, the indicator to be approximated is given by 1{Wx(u,0)≤0,−r≤u≤s};
see (7.5) and (7.10). Therefore, let U= (u1, . . . , un), where −r < u1 < · · ·<
un < s, be a subdivision of the interval [−r, s] and approximate the in-
dicator 1{Wx(u,0)≤0,−r≤u≤s} by 1{Wx(ui,0)≤0,i=1,...,n}. In this way, due to the
inequality 1{Wx(u,0)≤0,−r≤u≤s} ≤ 1{Wx(ui,0)≤0,i=1,...,n}, an upper bound of the
densities is obtained. More information on computational details are given
in the Appendix.

8. Examples. The methods presented in this paper can be applied to
a Gaussian sea having a general spectrum. In the following examples, we
will evaluate the distributions for the different wave characteristics for a
longcrested Gaussian sea, that is, a Gaussian sea where the spectrum has
no angular dependency. To get a longcrested sea let S(ω, θ) = S(ω), for one
single fixed direction θ. In this example θ = π, meaning that the waves are
moving in the direction of the positive x-axis. The spectrum S(ω) will be
a JONSWAP frequency spectrum; see Figure 2. This is a family of spectra
fully characterized by the set of parameters (hs, tp, γ, σa, σb), where hs is the
significant wave height, defined as four times the standard deviation of the

http://www.maths.lth.se/matstat/wafo/


ENCOUNTERED WAVE CHARACTERISTICS 21

sea elevation, and tp the peak period. The parameter γ, sometimes called
the peak enhancement factor, determines the concentration of the spectrum
around the peak frequency and σa and σb are spectral width parameters.
Here, for illustration reasons only, we choose hs = 11.5 m, tp = 12.25 s,
γ = 1, σa = 0.07 and σb = 0.09. Because γ equals one this is also known as
a Pierson–Moskowitz or Bretschneider spectrum. In this example, we have
also specified a cut-off frequency ωc, that is, a frequency such that S(ω) = 0
for all ω > ωc, namely ωc = 1.25 rad/s.

8.1. Distribution of slope. The distribution of slope observed at centers
of waves and overtaking encountered waves are given in Theorems 6.1 and
6.2, respectively. In Figure 3, these distributions are shown, in the encoun-
tered case for three different ship velocities. Clearly, the encountered distri-
bution is shifted toward less steep waves and the faster the ship sails, the
less steep the waves are. A simple explanation to this phenomenon is given
by the dispersion relation for deterministic waves. Recall that by Corollary
6.1, the spatial distribution (6.3) is transformed into its encountered version
(6.6) by the factor (V − v)+. The physical interpretation of this factor is
that waves that are likely to be slower than the ship will cancel. Because
the dispersion relation (2.1) implies that steep deterministic waves are slow,
it thus holds that mainly steep waves are canceled, leading to the shift in
the distribution—the steep waves are simply not fast enough. However, to

Fig. 2. The JONSWAP frequency spectrum used in the examples. This spectrum has sig-
nificant wave height hs = 11.5 m, peak period tp = 12.25 s and cut-off frequency ωc = 1.25
rad/s.
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Fig. 3. Palm distribution of slope observed at centers of waves in space (solid) and at
encountered centers of waves overtaking a ship sailing with velocity 7 m/s (dashed), 13 m/s
(dash-dotted) and 16 m/s (dotted). The computations are done for a JONSWAP frequency
spectrum having significant wave height hs = 11.5 m, peak period tp = 12.25 s and cut-off
frequency ωc = 1.25 rad/s.

fully understand the relation between slope and velocity, it is too great a
simplification to look at deterministic waves, although it gives some insight
into the physics involved in the problem. For a more thorough understand-
ing, one should study the distribution of the random velocity of the waves
conditional on the slope.

8.2. Distribution of waveheight and half-wavelength. Next we consider
the spatial and encountered joint densities of the waveheight H2 −H3 and
the half-wavelength x2 + x3, that can be obtained from Theorems 7.2 and
7.4. In Figure 4 these densities are shown, in the encountered case for two
different ship velocities, namely v = 7,13 m/s. Clearly, the effect of observing
the sea surface at waves overtaking the vessel compared to observing it along
a line at a fixed time, is that the density is shifted toward longer waves in the
former case. Moreover, the shift increases with increasing ship velocity. As
for the distribution of slope, this behavior can to some extent be explained
by the dispersion relation. Recall that [see (4.1)] the velocity of deterministic
waves satisfying the dispersion relation is proportional to the square root
of the wavelength. This means that long waves are faster than short ones.
Because the factor (V − v)+, explaining the difference between the spatial
and encountered densities, eliminates waves that are slower than the ship,
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Fig. 4. Density of half-wavelength x2 + x3 and waveheight H2 −H3 observed at wave
centers along a line at a fixed time point (top) and at centers of waves overtaking the
ship (bottom). In the latter case, the velocities of the ship are v = 7 m/s (solid) and
v = 13 m/s (dash-dotted). The computations are done for a JONSWAP frequency spectrum
having significant wave height hs = 11.5 m, peak period tp = 12.25 s and cut-off frequency
ωc = 1.25 rad/s.
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it thereby eliminates small and moderately high waves in favor of long and
high waves.

APPENDIX: COMPUTATIONAL DETAILS

A.1. Evaluation of densities with WAFO. In this section we discuss the
evaluation of the densities f space and f enc from Theorems 7.2 and 7.4, re-
spectively, using the WAFO-toolbox.

The density f space in (7.7) can be computed by the routine spec2mmtpdf
and it computes the desired density given the spectrum of the process
W (x, t). For the encountered density f enc given by (7.12), however, there
is no existing routine in the toolbox, but the function rind that evaluates
Gaussian multivariate expectations is of great help.

Before the intensity in the numerator in (7.12) can be evaluated, the
infinite dimensional indicator must be approximated by an indicator on a
finite set of grid points of the interval [−r, s]. Let U = (u1, . . . , un), where
−r < u1 < · · ·< un < s, be a subdivision of the interval [−r, s] and approxi-
mate the indicator 1{Wx(u,0)<0,−r≤u≤s} by 1{Wx(ui,0)<0,i=1,...,n}. To use rind
the full distribution, that is, the means and covariances of all variables in-
volved, must be computed. To simplify notation the variables are collected
in the following vectors:

Xt = (Wx(u1,0), . . . ,Wx(un,0)) =Wx(U,0),

Xd = (Wxx(−r,0),Wxx(s,0), vWx(0,0) +Wt(0,0)),

Xc = (Wx(−r,0),Wx(s,0),W (−r,0),W (s,0),W (0,0)).

Because W (x, t) is a zero mean stationary process, and due to the fact that
the means of the (quadratic mean) derivatives of a stationary process are
zero, the mean of all three vectors above is zero.

Computing the covariances requires more effort. In general, for a station-
ary field W (t) with covariance function R(τ) the following differentiation
rule holds

Cov

(
∂a+bW (s)

∂asj ∂bsk
,
∂c+dW (t)

∂ctm ∂dtn

)
= (−1)a+b ∂a+b+c+dR(τ)

∂aτj∂bτk∂cτm∂dτn

∣∣∣∣
τ=t−s

.(1.14)

Let Σ̃ be the covariance matrix of (Xt,Xd,Xc) and partition it as

Σ̃ =



Σtt Σtd Σtc

Σdd Σdc

Σcc


 ,

where it is understood that the lower left part of the matrix is the transpose
of the upper right part. By repeated use of (1.14) one obtains

Σtt = (−Rξξ(U
T −U,0)),



ENCOUNTERED WAVE CHARACTERISTICS 25

Σtd = (−Rξξξ(−r−U
T ,0),−Rξξξ(s−U

T ,0),

− vRξξ(−U
T ,0)−Rξτ (−U

T ,0)),

Σtc = (−Rξξ(−r−U
T ,0),−Rξξ(s−U

T ,0),−Rξ(−r−U
T ,0), . . . ,

−Rξ(s−U
T ,0),−Rξ(−U

T ,0)),

where −Rξξ(U
T −U,0) should be interpreted as the matrix with element

on row i and column j equal to −Rξξ(ui − uj,0), and −Rξξξ(−r−U
T ,0) is

a column vector with elements −Rξξξ(−r− uj ,0), i, j = 1, . . . , n. The other
submatrices should be interpreted in a similar fashion. The remaining part
of Σ is equal to

Σdd =




Rξξξξ(0,0) Rξξξξ(s+ r,0) vRξξξ(r,0) +Rξξτ (r,0)
Rξξξξ(0,0) vRξξξ(−s,0)+Rξξτ (−s,0)

−v2Rξξ(0,0)− 2vRξτ (0,0)−Rττ (0,0)


,

Σdc =




0 Rξξξ(s+ r,0)
Rξξξ(−r− s,0) 0 · · ·

−vRξξ(−r,0)−Rξτ (−r,0) −vRξξ(s,0)−Rξτ (s,0)

Rξξ(0,0) Rξξ(s+ r,0) Rξξ(r,0)
· · · Rξξ(−r− s,0) Rξξ(0,0) Rξξ(−s,0)

−vRξ(−r,0)−Rτ (−r,0) −vRξ(s,0)−Rτ (s,0) 0


,

Σcc =




−Rξξ(0,0) −Rξξ(s+ r,0) 0 −Rξ(s+ r,0) −Rξ(r,0)
−Rξξ(0,0) −Rξ(−r− s,0) 0 −Rξ(−s,0)

R(0,0) R(s+ r,0) R(r,0)
R(0,0) R(−s,0)

R(0,0)



.

The covariance function and its derivatives can be computed by the WAFO-
function spec2cov, that from a given spectrum computes the covariance
function and its derivatives up to the fourth order.

A.2. Computational issues. When the conditional expectation in the nu-
merator of (7.12) is computed numerically new difficulties arise. If the co-
variance matrix is badly scaled, densities can become singular in the nu-
merical computations. For example, it might happen that variances become
negative even though they should be small and positive. A way to make
the algorithms more stable is to rescale the covariance matrix such that its
elements are of comparable sizes.

For the spectra we will consider the average period is about 10 seconds
and the value of the average wave length is about 10 times as large, but
measured in meters. Because the sea elevation takes values in the same range
in both time and space, the derivatives will be of very different magnitudes.
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To get a better scaled covariance matrix the time- and space-coordinates
are, therefore, transformed according to

x̃= x

√
λ20

λ00
, t̃= t

√
λ02

λ00
.

Making this change of variables the spectral density is transformed to

S̃(ω̃, θ) = S(ω, θ)

√
λ02

λ
3/2
00

.

Note that the angle θ remains unaffected. In this way, the spectral moments
λ̃00, λ̃20 and λ̃02 of S̃(ω̃, θ) all become equal to one; see [17] for a proof. This
means that the average number of waves per transformed meter is equal
to 1/2π as well as the number of waves per transformed second. Also, the
variance of the sea elevation is transformed to one. Note that it is common
practice in wave data analysis to normalize the data to have unit variance.
However, in this case this is not enough in order to avoid a badly scaled
covariance matrix because the problems arise due to different spatial and
temporal scales. When the coordinates are transformed, the velocity of the
ship changes to

ṽ = v

√
λ20

λ02
.

To relate the spectral moments to the elements in the covariance matrix note
that according to (2.2) and (2.3) it holds that λ00 =R(0,0), λ20 =−Rξξ(0,0)
and λ02 = −Rττ (0,0). Because many of the elements on the diagonal of

Σ̃ are of this form, we can conclude that the covariance matrix obtained
after the coordinate transformation is better scaled than the original one.
After the density is computed with the transformed coordinates, it is then
easily transformed back to the true units seconds and meters. These kind of
transformations are implemented in the function wnormspec in WAFO.
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[3] Azäıs, J. M. and Wschebor, M. (2005). On the distribution of the maximum of a

Gaussian field with d parameters. Ann. Appl. Probab. 15 254–278. MR2115043
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