195 research outputs found
Central Executive Dysfunction and Deferred Prefrontal Processing in Veterans with Gulf War Illness.
Gulf War Illness is associated with toxic exposure to cholinergic disruptive chemicals. The cholinergic system has been shown to mediate the central executive of working memory (WM). The current work proposes that impairment of the cholinergic system in Gulf War Illness patients (GWIPs) leads to behavioral and neural deficits of the central executive of WM. A large sample of GWIPs and matched controls (MCs) underwent functional magnetic resonance imaging during a varied-load working memory task. Compared to MCs, GWIPs showed a greater decline in performance as WM-demand increased. Functional imaging suggested that GWIPs evinced separate processing strategies, deferring prefrontal cortex activity from encoding to retrieval for high demand conditions. Greater activity during high-demand encoding predicted greater WM performance. Behavioral data suggest that WM executive strategies are impaired in GWIPs. Functional data further support this hypothesis and suggest that GWIPs utilize less effective strategies during high-demand WM
Using Priming to Study Social Categorization
Do people spontaneously categorize stereotypically masculine and stereotypically feminine trait and job labels according to gender? The present experiment provided a methodologically stringent test of automatic gender-based categorization using a modification of a semantic priming methodology. Subjects processing goals were manipulated by asking questions about primes that either did or did not require semantic processing. Results provide support for a spontaneous gender-based categorization of trait labels regardless of the processing goals. However, semantic processing goals appear to be necessary for a spontaneous gender-based categorization of job labels
No imminent quantum supremacy by boson sampling
It is predicted that quantum computers will dramatically outperform their
conventional counterparts. However, large-scale universal quantum computers are
yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to
the platform of photons in linear optics, which has sparked interest as a rapid
way to demonstrate this quantum supremacy. Photon statistics are governed by
intractable matrix functions known as permanents, which suggests that sampling
from the distribution obtained by injecting photons into a linear-optical
network could be solved more quickly by a photonic experiment than by a
classical computer. The contrast between the apparently awesome challenge faced
by any classical sampling algorithm and the apparently near-term experimental
resources required for a large boson sampling experiment has raised
expectations that quantum supremacy by boson sampling is on the horizon. Here
we present classical boson sampling algorithms and theoretical analyses of
prospects for scaling boson sampling experiments, showing that near-term
quantum supremacy via boson sampling is unlikely. While the largest boson
sampling experiments reported so far are with 5 photons, our classical
algorithm, based on Metropolised independence sampling (MIS), allowed the boson
sampling problem to be solved for 30 photons with standard computing hardware.
We argue that the impact of experimental photon losses means that demonstrating
quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom
Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection
Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection. We identified viral Schlafen (vSlfn) as the main STING inhibitor, and ectromelia virus was severely attenuated in the absence of vSlfn. Both vSlfn-mediated virulence and STING inhibitory activity were mapped to the recently discovered poxin cGAMP nuclease domain. Animals were protected from subcutaneous, respiratory, and intravenous infection in the absence of vSlfn, and interferon was the main antiviral protective mechanism controlled by the DNA sensing pathway. Our findings support the idea that manipulation of DNA sensing is an efficient therapeutic strategy in diseases triggered by viral infection or tissue damage-mediated release of self-DNA
Establishing an infrastructure for collaboration in primate cognition research
Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets
Task-Dependent Individual Differences in Prefrontal Connectivity
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior
Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes
Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities
- …