3,365 research outputs found

    Cavity optomechanics with stoichiometric SiN films

    Get PDF
    We study high-stress SiN films for reaching the quantum regime with mesoscopic oscillators connected to a room-temperature thermal bath, for which there are stringent requirements on the oscillators' quality factors and frequencies. Our SiN films support mechanical modes with unprecedented products of mechanical quality factor QmQ_m and frequency νm\nu_m reaching Qmνm2×1013Q_{m} \nu_m \simeq2 \times 10^{13} Hz. The SiN membranes exhibit a low optical absorption characterized by Im(n)105(n) \lesssim 10^{-5} at 935 nm, representing a 15 times reduction for SiN membranes. We have developed an apparatus to simultaneously cool the motion of multiple mechanical modes based on a short, high-finesse Fabry-Perot cavity and present initial cooling results along with future possibilities.Comment: 4 pages, 5 figure

    Self-consistent treatment of the self-energy in nuclear matter

    Full text link
    The influence of hole-hole propagation in addition to the conventional particle-particle propagation, on the energy per nucleon and the momentum distribution is investigated. The results are compared to the Brueckner-Hartree-Fock (BHF) calculations with a continuous choice and conventional choice for the single-particle spectrum. The Bethe-Goldstone equation has been solved using realistic NNNN interactions. Also, the structure of nucleon self-energy in nuclear matter is evaluated. All the self-energies are calculated self-consistently. Starting from the BHF approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Using the self-consistent self-energy, the hole and particle self-consistent spectral functions including the particle-particle and hole-hole ladder contributions in nuclear matter are calculated using realistic NNNN interactions. We found that, the difference in binding energy between both results, i.e. BHF and self-consistent Green function, is not large. This explains why is the BHF ignored the 2h1p contribution.Comment: Preprint 20 pages including 15 figures and one tabl

    The interaction of unidirectional winds with an isolated barchan sand dune

    Get PDF
    Velocity profile measurements are determined on and around a barchan dune model inserted in the roughness layer on the tunnel floor. A theoretical investigation is made into the factors influencing the rate of sand flow around the dune. Flow visualization techniques are employed in the mapping of streamlines of flow on the dune's surface. Maps of erosion and deposition of sand are constructed for the barchan model, utilizing both flow visualization techniques and friction velocities calculated from the measured velocity profiles. The sediment budget found experimentally for the model is compared to predicted and observed results reported. The comparison shows fairly good agreement between the experimentally determined and predicted sediment budgets

    Rare Decay of the Top t -> cgg in the Standard Model

    Get PDF
    We calculate the one-loop flavor changing neutral current top quark decay t -> cgg in the Standard Model. We demonstrate that the rate for t -> cgg exceeds the rate for a single gluon emission t -> cg by about two orders of magnitude, while the rate for t -> cq barq (q=u) is slightly smaller than for t -> cg.Comment: 22 pages, 4 figures and 2 tables. Typo in Eq.2.1 corrected, text slightly modified, references added. Version to appear in Phys.Rev.

    Energy and Momentum densities of cosmological models, with equation of state ρ=μ\rho=\mu, in general relativity and teleparallel gravity

    Full text link
    We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex's value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in International Journal of Theoretical Physic

    New proposed method for traceability dissemination of capacitance measurements

    Get PDF
    Capacitance measurements at the National Institute of Standards (NIS), Egypt, are traceable to the Bureau International des Poids et Mesures (BIPM). It calibrates the main NIS standard capacitors, AH11A. In this paper, traceability of the BIPM capacitance measurements could be used to evaluate a new accurate measurement method through an Ultra-Precision Capacitance Bridge. The new method is carefully described by introducing some necessary equations and a demonstrating chart. Verification of this new method has been realized by comparing its results for the 10 pF and 100 pF capacitance standards with the results obtained by the conventional substitution method at 1 kHz and 1.592 kHz. The relative differences between the two methods are about 0.3 µF/F, which reflect the accuracy of the new measurement method. For higher capacitance ranges, the new measurement method has been applied for the capacitance measurements up to 1 μF at 1 kHz. The relative differences between the two methods are in the range of 5.5 µF/F on the average which proves the acceptable accuracy and the reliability of the new method to be used

    Energy and Momentum Distributions of Kantowski and Sachs Space-time

    Full text link
    We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou energy-momentum complexes to calculate the energy and momentum distributions of Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy distribution, but the definition of Landau-Lifshitz do not agree with them. We show that a signature switch should affect about everything including energy distribution in the case of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and Landau-Lifshitz prescriptions.Comment: 12 page
    corecore