620 research outputs found

    Point-of-care diagnostics of covid-19: From current work to future perspectives

    Get PDF
    Coronaviruses have received global concern since 2003, when an outbreak caused by SARS‐CoV emerged in China. Later on, in 2012, the Middle‐East respiratory syndrome spread in Saudi Arabia, caused by MERS‐CoV. Currently, the global crisis is caused by the pandemic SARS‐ CoV‐2, which belongs to the same lineage of SARS‐CoV. In response to the urgent need of diagnostic tools, several lab‐based and biosensing techniques have been proposed so far. Five main areas have been individuated and discussed in terms of their strengths and weaknesses. The cell‐culture detection and the microneutralization tests are still considered highly reliable methods. The genetic screening, featuring the well‐established Real‐time polymerase chain reaction (RT‐PCR), represents the gold standard for virus detection in nasopharyngeal swabs. On the other side, immunoassays were developed, either by screening/antigen recognition of IgM/IgG or by detecting the whole virus, in blood and sera. Next, proteomic mass‐spectrometry (MS)‐based methodologies have also been proposed for the analysis of swab samples. Finally, virus-biosensing devices were efficiently designed. Both electrochemical immunosensors and eye‐based technologies have been described, showing detection times lower than 10 min after swab introduction. Alternative to swab‐based techniques, lateral flow point‐of‐care immunoassays are already commercially available for the analysis of blood samples. Such biosensing devices hold the advantage of being portable for on‐site testing in hospitals, airports, and hotspots, virtually without any sample treatment or complicated lab precautions

    A 3D printable adapter for solid-state fluorescence measurements: the case of an immobilized enzymatic bioreceptor for organophosphate pesticides detection

    Get PDF
    The widespread use of pesticides in the last decades and their accumulation into the environment gave rise to major environmental and human health concerns. To address this topic, the scientific community pointed out the need to develop methodologies to detect and measure the presence of pesticides in different matrices. Biosensors have been recently explored as fast, easy, and sensitive methods for direct organophosphate pesticides monitoring. Thus, the present work aimed at designing and testing a 3D printed adapter useful on different equipment, and a membrane support to immobilize the esterase-2 from Alicyclobacillus acidocaldarius (EST2) bioreceptor. The latter is labelled with the IAEDANS, a bright fluorescent probe. EST2 was selected since it shows a high specificity toward paraoxon. Our results showed good stability and replicability, with an increasing linear fluorescent intensity recorded from 15 to 150 pmol of labelled EST2. Linearity of data was also observed when using the immobilized labelled EST2 to detect increasing amounts of paraoxon, with a limit of detection (LOD) of 0.09 pmol. This LOD value reveals the high sensitivity of our membrane support when mounted on the 3D adapter, comparable to modern methods using robotic workstations. Notably, the use of an independent support significantly simplified the manipulation of the membrane during experimental procedures and enabled it to match the specificities of different systems. In sum, this work emphasizes the advantages of using 3D printed accessories adapted to respond to the newest research needs. Graphical abstract: [Figure not available: see fulltext.

    A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor

    Get PDF
    The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices

    Altered Expression of Protamine-like and Their DNA Binding Induced by Cr(VI): A Possible Risk to Spermatogenesis?

    Get PDF
    Chromium (VI) is the most dangerous oxidation state among the stable forms of chromium. In this work, we evaluated the effect of exposing Mytilus galloprovincialis for 24 h to 1, 10, and 100 nM chromium (VI) on the properties of Protamine-like (PLs) and their gene levels in the gonads. Specifically, we analyzed, by AU-PAGE and SDS-PAGE, PLs extracted from unexposed and exposed mussels. In addition, via EMSA, we evaluated the ability of PLs to bind DNA and also verified their potential to protect DNA from oxidative damage. Finally, we assessed possible alterations in gonadal expression of mt10, hsp70, and genes encoding for PLs-II/PL-IV and PL-III. We found that for all experimental approaches the most relevant alterations occurred after exposure to 1 nM Cr(VI). In particular, a comigration of PL-II with PL-III was observed by SDS-PAGE; and a reduced ability of PLs to bind and protect DNA from oxidative damage was recorded. This dose of chromium (VI) exposure was also the one that produced the greatest alterations in the expression of both mt10 and PL-II/PL-IV encoding genes. All of these changes suggest that this dose of chromium (VI) exposure could affect the reproductive health of Mytilus galloprovincialis

    PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications

    Full text link
    Protein kinase R (PKR) has previously been suggested to mediate many of the deleterious consequences of a high-fat diet (HFD). However, previous studies have observed substantial phenotypic variability when examining the metabolic consequences of PKR deletion. Accordingly, herein, we have re-examined the role of PKR in the development of obesity and its associated metabolic complications in vivo as well as its putative lipid-sensing role in vitro. Here we show that the deletion of PKR does not affect HFD-induced obesity, hepatic steatosis or glucose metabolism, and only modestly affects adipose tissue inflammation. Treatment with the saturated fatty acid palmitate in vitro induced comparable levels of inflammation in WT and PKR KO macrophages, demonstrating that PKR is not necessary for the sensing of pro-inflammatory lipids. These results challenge the proposed role for PKR in obesity, its associated metabolic complications and its role in lipid-induced inflammation

    Interleukin-6 Attenuates Insulin-Mediated Increases in Endothelial Cell Signaling but Augments Skeletal Muscle Insulin Action via Differential Effects on Tumor Necrosis Factor-Îą Expression

    Get PDF
    OBJECTIVE: The cytokine interleukin-6 (IL-6) stimulates AMP-activated protein kinase (AMPK) and insulin signaling in skeletal muscle, both of which result in the activation of endothelial nitric oxide synthase (eNOS). We hypothesized that IL-6 promotes endothelial cell signaling and capillary recruitment in vivo, contributing to increased glucose uptake. RESEARCH DESIGN AND METHODS: The effect of IL-6 with and without insulin on AMPK, insulin, and eNOS signaling in and nitric oxide (NO) release from human aortic endothelial cells (HAECs) was examined. The physiological significance of these in vitro signaling events was assessed by measuring capillary recruitment in rats during control and euglycemic-hyperinsulinemic clamps with or without IL-6 infusion. RESULTS: IL-6 blunted increases in insulin signaling, eNOS phosphorylation (Ser1177), and NO production and reduced phosphorylation of AMPK in HAEC in vitro and capillary recruitment in vivo. In contrast, IL-6 increased Akt phosphorylation (Ser473) in hindlimb skeletal muscle and enhanced whole-body glucose disappearance and glucose uptake during the clamp. The differences in endothelial cell and skeletal muscle signaling were mediated by the cell-specific, additive effects of IL-6 and insulin because this treatment markedly increased tumor necrosis factor (TNF)-alpha protein expression in HAECs without any effect on TNF-alpha in skeletal muscle. When HAECs were incubated with a TNF-alpha-neutralizing antibody, the negative effects of IL-6 on eNOS signaling were abolished. CONCLUSIONS: In the presence of insulin, IL-6 contributes to aberrant endothelial cell signaling because of increased TNF-alpha expression

    Atherogenic Lipid Stress Induces Platelet Hyperactivity Through CD36-Mediated Hyposensitivity To Prostacyclin-; The Role Of Phosphodiesterase 3A

    Get PDF
    Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signalling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidised low density lipoproteins (oxLDL) associated with dyslipidaemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signalling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a PDE-insensitive cAMP analogue, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of phosphodiesterase 3A (PDE3A), leading to diminished cAMP signalling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signalling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidised phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild type mice strongly promoted FeCl3 induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidaemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signalling. In contrast, platelet sensitivity to a PDE-resistant cAMP analogue remained normal. Genetic deletion of CD36, protected dyslipidaemic animals from PGI2 hyposensitivity and restored PKA signalling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signalling.  

    Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle: Association With Changes in cAMP, Energy State, and Endogenous Fuel Mobilization

    Get PDF
    OBJECTIVE: Interleukin-6 (IL-6) directly activates AMP-activated protein kinase (AMPK) in vivo and in vitro; however, the mechanism by which it does so is unknown. RESEARCH DESIGN AND METHODS: We examined this question in skeletal muscle using an incubated rat extensor digitorum longus (EDL) muscle preparation as a tool. RESULTS: AMPK activation by IL-6 coincided temporally with a nearly threefold increase in the AMP:ATP ratio in the EDL. The effects of IL-6 on both AMPK activity and energy state were inhibited by coincubation with propranolol, suggesting involvement of β-adrenergic signaling. In keeping with this notion, IL-6 concurrently induced a transient increase in cAMP, and its ability to activate AMPK was blocked by the adenyl cyclase inhibitor 2′5′-dideoxyadenosine. In addition, like other β-adrenergic stimuli, IL-6 increased glycogen breakdown and lipolysis in the EDL. Similar effects of IL-6 on AMPK, energy state, and cAMP content were observed in C2C12 myotubes and gastrocnemius muscle in vivo, indicating that they were not unique to the incubated EDL. CONCLUSIONS: These studies demonstrate that IL-6 activates AMPK in skeletal muscle by increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio. They also suggest that substantial increases in IL-6 concentrations, such as those that can result from its synthesis by muscles during exercise, may play a role in the mobilization of fuel stores within skeletal muscle as an added means of restoring energy balance.United States Public Health Service (RO1DK19514, RO1DK067509); Ruth L. Kirschstein NRSA Postdoctoral Training Grant (HL-07224); Fonds de la Recherche en Santé du Québe

    Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy

    Get PDF
    Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile
    • …
    corecore