44 research outputs found

    The impact of boron seed priming on seedling establishment, growth, and grain biofortification of mungbean (Vigna radiata L.) in yermosols

    Get PDF
    Boron-deficiency in Yermosols is among the major constraints to mungbean productivity and grain biofortification in Pakistan. However, agronomic strategies such as boron (B) seed priming have potential to improve mungbean yield and grain biofortification. Moreover, deficiency to toxicity range for B is very narrow; therefore, it is pre-requisite to optimize its dose before field evaluation. A wire house experiment was planned out to reconnoiter the impact of seed priming with B on growth and quality of two cultivars of mungbean, i.e., ‘NM-2011’ and ‘NM-2016’. Four different B levels were used as seed priming, i.e., 0.01%, 0.05%, 0.1% and 1.0% B, (borax Na2B4O7.10H2O, 11.5% B) were tested, whereas hydropriming was regarded as control. Seed priming with 0.01% B significantly (p≤0.05) lowered time taken to start germination and time to reach 50% emergence, whereas improved mean emergence time, emergence index, final emergence percentage, number of leaves, dry and fresh weight of root, shoot, and total weight, root length, plant height, chlorophyll contents, number of pods and 100-grain weight, seeds per plant, grain yield per plant, B concentrations in stem and grain, grain protein, carbohydrate and fiber in both cultivars. Boron seed priming proved beneficial under a specific range; however, deficiency (hydropriming) and excess (above 0.01% B) of B were detrimental for mungbean growth and productivity. The cultivar ‘NM-2016’ had significantly (p≤0.05) higher yield due to prominent increase in yield related traits with 0.01% B priming as compared to ‘NM-2011’. In conclusion, B seed priming (0.01% B) seemed a feasible choice for improving mungbean growth, yield related traits and grain-B concentration of mungbean on Yermosols

    Architectural Heterogeneity in Tumors Caused by Differentiation Alters Intratumoral Drug Distribution and Affects Therapeutic Synergy of Antiangiogenic Organoselenium Compound

    Get PDF
    Tumor differentiation enhances morphologic and microvascular heterogeneity fostering hypoxia that retards intratumoral drug delivery, distribution, and compromise therapeutic efficacy. In this study, the influence of tumor biologic heterogeneity on the interaction between cytotoxic chemotherapy and selenium was examined using a panel of human tumor xenografts representing cancers of the head and neck and lung along with tissue microarray analysis of human surgical samples. Tumor differentiation status, microvessel density, interstitial fluid pressure, vascular phenotype, and drug delivery were correlated with the degree of enhancement of chemotherapeutic efficacy by selenium. Marked potentiation of antitumor activity was observed in H69 tumors that exhibited a well-vascularized, poorly differentiated phenotype. In comparison, modulation of chemotherapeutic efficacy by antiangiogenic selenium was generally lower or absent in well-differentiated tumors with multiple avascular hypoxic, differentiated regions. Tumor histomorphologic heterogeneity was found prevalent in the clinical samples studied and represents a primary and critical physiological barrier to chemotherapy

    Analytical hierarchy process as a tool supporting a decision-making for assessment of the risk of transboundary infectious animal disease introduction to the Russian Federation and previously disease-free territories

    Get PDF
    The livestock industry is increasingly taking its place in the economy of the Russian Federation. Its export potential is actively growing. Already, up to 10% of agricultural products are exported to foreign markets. The demand for food steadily increases during crises, which in turn increases the role of the veterinary service, whose tasks include protecting the country’s territory from the introduction of infectious diseases of animals from foreign countries; implementation of measures to prevent and eliminate infectious and other diseases in agricultural, domestic, zoo and other animals, fur-bearing animals, birds, fish and bees, as well as the implementation of plans of the regional veterinary service in the field of animal husbandry. The article assesses the validity of the possibilities and use of modern methods of analyzing and predicting the spread of animal morbidity, identifying cause-and-effect relationships and the extent of the spread of particularly dangerous animal diseases. The authors propose to consider the possibility of using the mathematical method of hierarchy analysis as a scientifically sound decisionmaking support tool when assessing the risk of introducing trans-border infectious animal diseases into previously prosperous territories of the Russian Federation. This approach can be used in the process of choosing the most appropriate alternative from several risk assessment options. The Hierarchy Analysis Method (MAI) is a mathematical tool for a qualitative systematic approach to solving decision-making problems. This method was developed by the American scientist Thomas Lewis Saati in 1970, since then it has been actively developing and widely used in practice. The hierarchy analysis method can be used not only to compare objects, but also to solve more complex management and forecasting tasks

    Bottle house: A case study of transdisciplinary research for tackling global challenges

    Get PDF
    This work was done in collaboration with colleagues from the institute of Engineering sciences and Architecture Research Institute The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Globalisation has brought a number of challenges to the fore, particularly those problems which require collaboration, innovation and capability development between nations. There are some complex issues piquing the attention of researchers with respect to sustainable development, such as, waste management, climate change, and access to amenities, housing or education. Non-Governmental Organisations, Institutions, governments and others working in the field of international development have been grappling with these difficulties for decades. However, it is becoming apparent that many of these difficulties require multifaceted solutions, particularly in Low and Middle Income countries (LMIC) where it is difficult to consolidate gains and fund schemes. Development work can sometimes be disjointed and inefficient, impairing the capability of local communities and inhibiting sustainable and innovative approaches. Transdisciplinary collaboration is reliably a more efficient way of tackling some of the most pertinacious challenges. This paper presents findings from a transdisciplinary research project focussed on developing resources and capacity for the construction of affordable homes in a low income community in Nigeria. The project explored the suitability of using upcycled materials such as plastic bottles and agricultural waste in construction. Using a user-centred, co-creation methodology, a team of experts from the UK and Nigeria worked with local entrepreneurs to build a prototype home. The study explores the functionality of the home and the sustainability of project. The findings demonstrate the benefits of tackling global challenges from a transdisciplinary perspective. This has implications for researchers focused on developing technical solutions for low-income communities

    Synoptic climatology of winter daily temperature extremes in Sapporo, northern Japan

    Get PDF
    Extreme winter daily temperature is an important parameter for determining winter precipitation. This study used a principal component analysis and k-means clustering to characterize the circulation patterns of extreme daily temperatures for 19 winter seasons in Sapporo, Hokkaido, Japan. Climatological anomaly maps were constructed for sea level pressure (SLP) and the 500-hPa geopotential height for the identified minimum (Tmin(10); 239days) and maximum (Tmax(90); 236days) daily temperature extremes. The Tmax(90) SLP anomaly pattern was the opposite (west-east orientation) of the Tmin(10) pattern. The circulation patterns that predominantly contributed to winter rainfall were derived from cyclones over the Sea of Japan via instability created by abundant heat and moisture over the ocean and a strong positive 500-hPa height anomaly over Hokkaido

    Climatological Characteristics of Heavy Rainfall in Northern Pakistan and Atmospheric Blocking over Western Russia

    Get PDF
    Pakistan and northwestern India have frequently experienced severe heavy rainfall events during the boreal summer over the last 50 years including an event in late July and early August 2010 due to a sequence of monsoon surges. This study identified five dominant atmospheric patterns by applying principal component analysis and k-means clustering to a long-term sea level pressure dataset from 1979 to 2014. Two of these five dominant atmospheric patterns corresponded with a high frequency of the persistent atmospheric blocking index and positive sea level pressure over western Russia as well as an adjacent meridional trough ahead of northern Pakistan. In these two groups, a negative sea surface temperature anomaly was apparent over the equatorial mid- to eastern Pacific Ocean. The heavy precipitation periods with high persistent blocking frequency in western Russia as in the 2010 heat wave tended to have 1.2 times larger precipitation intensity compared to the whole of the heavy precipitation periods during the 36 years

    Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma—Bench-to-Bedside Therapy

    Get PDF
    Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies

    Hypoxia-Specific Drug Tirapazamine Does Not Abrogate Hypoxic Tumor Cells in Combination Therapy with Irinotecan and Methylselenocysteine in Well-Differentiated Human Head and Neck Squamous Cell Carcinoma A253 Xenografts1

    Get PDF
    Well-differentiated hypoxic regions in head and neck squamous cell carcinoma like in A253 xenografts are avascular and, therefore, hinder drug delivery leading to drug resistance and tumor regrowth. Methylselenocysteine (MSC, 0.2 mg/mouse per day per oral for 35 days starting 7 days before the first irinotecan (CPT-11)) has been found to increase efficacy of a wide variety of chemotherapeutic agents including CPT-11 (100 mg/kg per week x 4 intravenously). Whereas CPT-11 leads to a 10% complete response (CR) in A253 xenografts, the combination of MSC and CPT-11 increased the CR to 70%. Surviving tumors were found to consist largely of avascular hypoxic regions. Here, we investigated the combination of tirapazamine (TPZ, 70 mg/kg per week intraperitoneal x 4 administered 3 or 72 hours before CPT-11), a bioreductive drug in clinical trial with selective toxicity for hypoxic cells, with MSC and CPT-11 in further enhancing the cure rates. Tumor response, change in tumor hypoxic regions, and DNA damage were monitored in vivo. Tirapazamine administered 3 hours before CPT-11 in combination with MSC + CPT-11 led to a lower tumor burden. Tirapazamine did not increase cure rate beyond that of MSC + CPT-11 combination and was instead found to decrease cures with no evidence of an increased DNA damage or a significant reduction in avascular hypoxic tumor regions. CD31 immunostaining in A253 demonstrated disruption of tumor vessels by TPZ that could lower cytotoxic drug delivery to carbonic anhydrase IX-positive hypoxic tumor cells and may explain at least partially these unexpected results

    Meso-scale deformation and damage in thermally bonded nonwovens

    No full text
    This article was published in the Journal of Materials Science [© Springer Science+Business Media]. The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-012-7013-yThermal bonding is the fastest and the cheapest technique for manufacturing nonwovens. Understanding mechanical behaviour of these materials, especially related to damage, can aid in design of products containing nonwoven parts. A finite element (FE) model incorporating mechanical properties related to damage such as maximum stress and strain at failure of fabric’s fibres would be a powerful design and optimisation tool. In this study, polypropylene-based thermally bonded nonwovens manufactured at optimal processing conditions were used as a model system. A damage behaviour of the nonwoven fabric is governed by its single-fibre properties, which are obtained by conducting tensile tests over a wide range of strain rates. The fibres for the tests were extracted from the nonwoven fabric in a way that a single bond point was attached at both ends of each fibre. Additionally, similar tests were performed on unprocessed fibres, which form the nonwoven. Those experiments not only provided insight into damage mechanisms of fibres in thermally bonded nonwovens but also demonstrated a significant drop in magnitudes of failure stress and respective strain in fibres due to the bonding process. A novel technique was introduced in this study to develop damage criteria based on the deformation and fracture behaviour of a single fibre in a thermally bonded nonwoven fabric. The damage behaviour of a fibrous network within the thermally bonded fabric was simulated with a FE model consisting of a number of fibres attached to two neighbouring bond points. Additionally, various arrangements of fibres’ orientation and material properties were implemented in the model to analyse the respective effects
    corecore