470 research outputs found

    Dynamical Characterization and Stabilization of Large Gravity-Tractor Designs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76167/1/AIAA-32554-693.pd

    Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    Get PDF
    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC_0). It varies in the range of 10–30 g mol^(−1), depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate

    Seismic Performance of Integral Abutment Highway Bridges in Illinois

    Get PDF
    The seismic behavior of integral abutment bridges (IABs) is of particular interest in southern Illinois, where proximity to the New Madrid Seismic Zone may create significant ground motion accelerations during an earthquake. IABs are common in modern bridge construction due to their lack of expansion joints between the superstructure and abutment, which leads to decreased environmental damage at the abutment seat when compared to stub abutment bridges. However, elimination of expansion joints can also lead to development of complex soil-structure-interaction limit states at the abutment and its foundation when an IAB is subjected to lateral loads. This report examines the seismic behavior of typical IABs in southern Illinois and develops feedback and recommendations for improving IAB seismic designs. This is accomplished through modeling IABs as a whole bridge system, subjecting the models to representative ground motions, monitoring the behavior of key IAB components, using the monitored results to form a comprehensive view of seismic behavior, and employing the developed knowledge to form recommendations for improving IAB seismic performance. IAB models are developed in OpenSees through nonlinear modeling of multiple components, as well as the connections between components, representing typical IAB designs for Illinois, and are then subjected to 1000-year return period hazard ground motions developed specifically for southern Illinois. Incremental dynamic analyses are also performed. IABs of varying superstructure materials, span configurations, bearing layouts, pier heights, and foundation soil conditions are dynamically analyzed using the sets of developed ground motions. Damage to pier columns is especially prominent in IABs with shorter piers and longer abutment-to-abutment spans, while abutment foundation damage in terms of yielding, local buckling, and rupture of the piles frequently occurs in many IAB variants. Recommendations on design modifications to improve the seismic behavior of IABs by limiting the level of damage to these components are also investigated through modifying elastomeric bearing side retainer strength, fixed bearing strength, pier column size, and backfill contributions.IDOT-R27-133Ope

    Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Full text link
    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides, or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ~0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Analytical method for perturbed frozen orbit around an Asteroid in highly inhomogeneous gravitational fields : A first approach

    Get PDF
    This article provides a method for nding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is rstly stated, in polar-nodal coordinates, which takes into account the coecients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA)

    Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and Sagebrush–Steppe Ecosystems

    Get PDF
    Carbon sequestration was estimated a northern mixed-grass prairie site and a sagebrush–steppe site in southeastern Wyoming using an approach that integrates remote sensing, CO2 flux measurements, and meteorological data. Net ecosystem exchange (NEE) of CO2 was measured using aircraft and ground flux techniques and was linearly related to absorbed photosynthetically active radiation (APAR). The slope of this relationship is the radiation use efficiency (ε = 0.51 g C/MJ APAR); there were no significant differences in the regression coefficients between the two sites. Furthermore, ecosystem chamber measurements of total respiration in 1998 and 1999 were used to develop a functional relationship with daily average temperature; the Q10 of the relationship was 2.2. Using the Advanced Very High Resolution radiometer. Normalized Difference Vegetation Index and meteorological data, annual gross primary production and respiration were calculated from 1995 to 1999 for the two sites. Overall, the sagebrush– steppe site was a net carbon sink, whereas the northern mixed-grass prairie site was in carbon balance. There was no significant relationship between NEE and APAR for a coniferous forest site, indicating this method for scaling up CO2 flux data may be only applicable to rangeland ecosystems. The combination of remote sensing with data from CO2 flux networks can be used to estimate carbon sequestration regionally in rangeland ecosystems

    Seismic Performance of Seat-Type Abutment Highway Bridges in Illinois

    Get PDF
    This study assesses the seismic performance of quasi-isolated highway bridges with seat-type abutments, validates the current IDOT design strategy, and provides recommendations for improving a bridge’s seismic behavior. To encompass common configurations of highway bridges with non-seismically designed bearing components employed as sacrificial connections between superstructures and substructures, a suite of prototype bridges with variations in span arrangement, girder type, skew angle, pier column height, and foundation soil condition were studied. Detailed three-dimensional nonlinear finite-element models were developed for the bridges, incorporating various critical structural components and geotechnical mechanisms. Multi-mode adaptive pushover analyses were conducted to investigate bridge response characteristics in terms of the force distribution among substructures, the sequence of limit state occurrences, the fusing of sacrificial connections, and the vulnerability of critical bridge components. Eigenvalue modal analyses were also performed in the elastic and inelastic deformation states to reveal modal response characteristics of the bridges. The study culminated in an extensive seismic performance assessment of quasi-isolated bridges, for which thousands of nonlinear dynamic time-history analyses were carried out. The bridges were subjected to a suite of site-specific earthquake ground motions, taking into account the site condition and the regional seismicity of Cairo, Illinois. Assessment results validated that the current quasi-isolation bridge design strategy is generally effective, and the majority of the studied prototype bridges are unlikely to fail in global collapse when subjected to horizontal earthquake ground motions with a 1,000-year return period in deep southern Illinois. Although most of the prototype bridges exhibited satisfactory seismic performance, the response of a small number of them demonstrated a risk of bearing unseating and severe pier column damage. With the aim of improving the seismic performance of these bridges, preliminary recommendations for calibrating the current design strategy were proposed, and their efficacy was demonstrated by comparative studies.IDOT-R27-133Ope

    Modification of ground motions for use in Central North America: Southern Illinois surface ground motions for structural analysis

    Get PDF
    The lack of ground motion time history records with a 1000-year return period hazard for Central North America (CNA) often requires earthquake engineering researchers in the area to develop ground motions of their own. This report briefly describes a procedure for developing 1000-year return period ground motion time history records, and this procedure was applied for 10 sites in southern Illinois. Accompanying this report are 20 individual ground motion time history records developed at each of the 10 sites (for a total of 200 ground motions). These ground motions may be useful for various purposes including in dynamic structural analyses of bridges and other structures in southern Illinois (and potentially other CNA regions). The accompanying ground motions are developed following the detailed procedure presented in Kozak et al. [2017]. See "Has Parts" for persistent link to ground motion data files.Ope
    • …
    corecore