13 research outputs found

    Status of GRB Observations with the Suzaku Wideband All-sky Monitor

    Get PDF
    The Wide-band All-sky Monitor (WAM) is a function of the large lateral BGO shield of the Hard X-ray Detector (HXD) onboard Suzaku. Its large geometrical area of 800 cm^2 per side, the large stopping power for the hard X-rays and the wide-field of view make the WAM an ideal detector for gamma-ray bursts (GRBs) observations in the energy range of 50-5000 keV. In fact, the WAM has observed 288 GRBs confirmed by other satellites, till the end of May 2007.Comment: 4 pages, 4 figures, to be published in the proceedings of ''Gamma Ray Bursts 2007'', Santa Fe, New Mexico, November 5-

    Performance of GRB monitor with Astro-E2 Hard X-ray Detector (HXD-II)

    Get PDF
    The Hard X-ray Detector (HXD-II) is one of the three instruments onboard the Astro-E2 satellite scheduled for launch in 2005. The HXD-II consists of 16 main counters (Well units), surrounded by 20 active shield counters (Anti units). The Anti units have a large geometrical area of ∼ 800 cm2 with an uncollimated field of view covering ∼ 2π steradian. Utilizing 2.6 cm thick BGO crystals, they realize a large effective area of 400 cm2 for 1MeV photons. In the energy range of 300–5000 keV, the expected effective area is significantly larger than those of other gamma-ray burst instruments, such as CGRO/BATSE, HETE-2/FREGATE, and GLAST/GBM. Therefore, the Anti units act as a Wideband All-sky Monitor (WAM) for gamma-ray bursts in the energy range of 50–5000 keV

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    Hard X-ray Detector (HXD) on Board Suzaku

    Get PDF
    The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit back ground based on a combination of new techniques, including the concept of well-type active shield counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV, the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large effective area for sub-MeV to MeV gamma-rays. They work as an excellent gamma-ray burst monitor with limited angular resolution (~5 degree). The on-board signal-processing system and the data transmitted to the ground are also described.Comment: 35 pages, 25 figures and 4 tables; acceted for Publication of the Astronomical Society of Japa

    A pore-scale study of transport of inertial particles by water in porous media

    No full text
    We study the transport of inertial particles in water flow in porous media. Our interest lies in understanding the accumulation of particles including the possibility of clogging. We propose that accumulation can be a result of hydrodynamic effects: the tortuous paths of the porous medium generate regions of dominating strain, which favour the accumulation of particles. Numerical simulations show that essentially two accumulation regimes are identified: for low and for high flow velocities. When particles accumulate at the entrance of a pore throat (high-velocity region), a clog is formed. This significantly modifies the flow, as the partial blockage of the pore causes a local redistribution of pressure, which diverts the upstream water flow into neighbouring pores. Moreover, we show that accumulation in high velocity regions occurs in heterogeneous media, but not in homogeneous media, where we refer to homogeneity with respect to the distribution of the pore throat diameters
    corecore