1,008 research outputs found

    The giant effect of magnetic ordering on a sound velocity in a sigma-Fe55Cr45 alloy

    Full text link
    We studied atomic dynamics of sigma-Fe(100-x)Cr(x) (x=45 and 49.5) alloys using nuclear inelastic scattering of synchrotron radiation. For the sigma-Fe55Cr45 alloy, the derived reduced iron-partial density of phonon states reveal a huge difference in the low-energy region between magnetic and paramagnetic states. The latter implies a ca.36% increase of the sound velocity in the magnetic phase, which testifies to a magnetically-induced hardening of the lattice.Comment: 8 pages, 3 figures, 17 reference

    Measurement of synchrotron-radiation-excited Kossel patterns

    Get PDF
    Kossel line patterns contain information on the crystalline structure, such as the magnitude and the phase of Bragg reflections. For technical reasons, most of these patterns are obtained using electron beam excitation, which leads to surface sensitivity that limits the spatial extent of the structural information. To obtain the atomic structure in bulk volumes, X-rays should be used as the excitation radiation. However, there are technical problems, such as the need for high resolution, low noise, large dynamic range, photon counting, twodimensional pixel detectors and the small spot size of the exciting beam, which have prevented the widespread use of Kossel pattern analysis. Here, an experimental setup is described, which can be used for the measurement of Kossel patterns in a reasonable time and with high resolution to recover structural information

    Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance scattering

    Full text link
    We have studied the magnetization depth profiles in a [57Fe(dFe)/Cr(dCr)]x30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr 2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mossbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ~180 deg (spin-flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magneto-resistance devices can be further tailored using ultrathin magnetic layers.Comment: 9 pages, 3 figure

    Tracking the connection between disorder and energy landscape in glasses using geologically hyperaged amber

    Full text link
    Fossil amber offers the unique opportunity of investigating an amorphous material which has been exploring its energy landscape for more than 110 Myears of natural aging. By applying different x-ray scattering methods to amber before and after annealing the sample to erase its thermal history, we identify a link between the potential energy landscape and the structural and vibrational properties of glasses. We find that hyperaging induces a depletion of the vibrational density of states in the THz region, also ruling the sound dispersion and attenuation properties of the corresponding acoustic waves. Critically, this is accompanied by a densification with structural implications different in nature from that caused by hydrostatic compression. Our results, rationalized within the framework of fluctuating elasticity theory, reveal how upon approaching the bottom of the potential energy landscape (9% decrease in the fictive temperature TfT_f) the elastic matrix becomes increasingly less disordered (6%) and longer-range correlated (22%).Comment: 9 pages, 10 figure

    Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure

    Full text link
    The temperature and pressure dependence of the partial density of phonon states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear inelastic scattering (NIS). The high energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features towards higher energies by ~4% with decreasing temperature from 296 K to 10 K was found. However, no detectable change at the tetragonal - orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase of the superconducting temperature from 8 K to 34 K, results in an increase of the optical phonon mode energies at 296 K by ~12%, and an even more pronounced increase for the lowest-lying transversal acoustic mode. Despite these strong pressure-induced modifications of the phonon-DOS we conclude that the pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the framework of classical electron-phonon coupling. This result suggests the importance of spin fluctuations to the observed superconductivity

    Subthreshold and near-threshold kaon and antikaon production in proton-nucleus reactions

    Full text link
    The differential production cross sections of K^+ and K^- mesons have been measured at the ITEP proton synchrotron in p+Be, p+Cu collisions under lab angle of 10.5^0, respectively, at 1.7 and 2.25, 2.4 GeV beam energies. A detailed comparison of these data with the results of calculations within an appropriate folding model for incoherent primary proton-nucleon, secondary pion-nucleon kaon and antikaon production processes and processes associated with the creation of antikaons via the decay of intermediate phi mesons is given. We show that the strangeness exchange process YN->NNK^- gives a small contribution to the antikaon yield in the kinematics of the performed experiment. We argue that in the case when antikaon production processes are dominated by the channels with KK^- in the final state, the cross sections of the corresponding reactions are weakly influenced by the in-medium kaon and antikaon mean fields.Comment: 24 pages. accepted for publication at J.Phys.

    Cavity Dynamical Casimir Effect in the presence of a three-level atom

    Full text link
    We consider the scenario in which a damped three-level atom in the ladder or V configurations is coupled to a single cavity mode whose vacuum state is amplified by dint of the dynamical Casimir effect. We obtain approximate analytical expressions and exact numerical results for the time-dependent probabilities, demonstrating that the presence of the third level modifies the photon statistics and its population can serve as a witness of photon generation from vacuum.Comment: 7 pages, 4 figure
    corecore