2,535 research outputs found
Measurement of Aerosols at the Pierre Auger Observatory
The air fluorescence detectors (FDs) of the Pierre Auger Observatory are
vital for the determination of the air shower energy scale. To compensate for
variations in atmospheric conditions that affect the energy measurement, the
Observatory operates an array of monitoring instruments to record hourly
atmospheric conditions across the detector site, an area exceeding 3,000 square
km. This paper presents results from four instruments used to characterize the
aerosol component of the atmosphere: the Central Laser Facility (CLF), which
provides the FDs with calibrated laser shots; the scanning backscatter lidars,
which operate at three FD sites; the Aerosol Phase Function monitors (APFs),
which measure the aerosol scattering cross section at two FD locations; and the
Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence
of aerosol attenuation.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida
Mexico, July 2007; 4 pages, 4 figure
Radiation Hardness of Thin Low Gain Avalanche Detectors
Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure
where an appropriate doping of the multiplication layer (p+) leads to high
enough electric fields for impact ionization. Gain factors of few tens in
charge significantly improve the resolution of timing measurements,
particularly for thin detectors, where the timing performance was shown to be
limited by Landau fluctuations. The main obstacle for their operation is the
decrease of gain with irradiation, attributed to effective acceptor removal in
the gain layer. Sets of thin sensors were produced by two different producers
on different substrates, with different gain layer doping profiles and
thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected
charge and leakage current was compared before and after irradiation with
neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient
Current Technique and charge collection measurements with LHC speed electronics
were employed to characterize the detectors. The thin LGAD sensors were shown
to perform much better than sensors of standard thickness (~300 um) and offer
larger charge collection with respect to detectors without gain layer for
fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of
LGADs. Pions were found to be more damaging than neutrons at the same
equivalent fluence, while no significant difference was found between different
producers. At very high fluences and bias voltages the gain appears due to deep
acceptors in the bulk, hence also in thin standard detectors
Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2
We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon
Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison
of these new results to data reported before on 50 {\mu}m thick UFSD produced
by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences
of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested
pre-irradiation and post-irradiation with minimum ionizing particles (MIPs)
from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and
the timing resolution were measured as a function of bias voltage at -20C and
-27C. The timing resolution was extracted from the time difference with a
second calibrated UFSD in coincidence, using the constant fraction method for
both. Within the fluence range measured, the advantage of the 35 {\mu}m thick
UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap
with arXiv:1707.0496
The Lidar System of the Pierre Auger Observatory
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the origin of ultrahigh energy cosmic rays with energies above 10^18 eV. The energy calibration of the detector is based on a system of four air fluorescence detectors. To obtain reliable calorimetric information from the fluorescence stations, the atmospheric conditions at the experiment's site need to be monitored continuously during operation. One of the components of the observatory's atmospheric monitoring system is a set of four elastic backscatter lidar stations, one station at each of the fluorescence detector sites. This paper describes the design, current status, standard operation procedure, and performance of the lidar system of the Pierre Auger Observatory
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
- …
