612 research outputs found

    Andreev reflections on Y1-xCaxBa2Cu3O7-delta evidence for an unusual proximity effect

    Full text link
    We have measured Andreev reflections between an Au tip and Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7 - \delta} thin films in the in-plane orientation. The conductance spectra are best fitted with a pair potential having the "d_{x^{2}-y^{2}+is" symmetry. We find that the amplitude of the "is" component is enhanced as the contact transparency is increased. This is an indication for an unusual proximity effect that modifies the pair potential in the superconductor near the surface with the normal metal.Comment: 4 pages, 4 figure

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T11T_1^{-1}. One gives rise to an activation-type component in T11T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let

    Exact quantum states of a general time-dependent quadratic system from classical action

    Full text link
    A generalization of driven harmonic oscillator with time-dependent mass and frequency, by adding total time-derivative terms to the Lagrangian, is considered. The generalization which gives a general quadratic Hamiltonian system does not change the classical equation of motion. Based on the observation by Feynman and Hibbs, the propagators (kernels) of the systems are calculated from the classical action, in terms of solutions of the classical equation of motion: two homogeneous and one particular solutions. The kernels are then used to find wave functions which satisfy the Schr\"{o}dinger equation. One of the wave functions is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend on the way of choosing the classical solutions, while the wave functions depend on the choice. The generalization which gives a rather complicated quadratic Hamiltonian is simply interpreted as acting an unitary transformation to the driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.

    Master-equations for the study of decoherence

    Full text link
    Different structures of master-equation used for the description of decoherence of a microsystem interacting through collisions with a surrounding environment are considered and compared. These results are connected to the general expression of the generator of a quantum dynamical semigroup in presence of translation invariance recently found by Holevo.Comment: 10 pages, latex, no figures, to appear in Int. J. Theor. Phy

    The network topology of a potential energy landscape: A static scale-free network

    Full text link
    Here we analyze the topology of the network formed by the minima and transition states on the potential energy landscape of small clusters. We find that this network has both a small-world and scale-free character. In contrast to other scale-free networks, where the topology results from the dynamics of the network growth, the potential energy landscape is a static entity. Therefore, a fundamentally different organizing principle underlies this behaviour: The potential energy landscape is highly heterogeneous with the low-energy minima having large basins of attraction and acting as the highly-connected hubs in the network.Comment: 4 pages, 4 figures, revtex

    Test Particle in a Quantum Gas

    Get PDF
    A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system. In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single generator master equation for the description of quantum Brownian motion in which the correction due to quantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics are compared.Comment: 9 pages, revtex, no figure

    Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene

    Get PDF
    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level method.Comment: 9 pages, 4 figure

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic
    corecore