1,586 research outputs found
Structural characterization of magnetoferritin
Physico-chemical characterization of biomacromolecule magnet of erritin in terms of morphology, structural and magnetic properties shows that iron oxides can be efficiently loaded into apoferritin molecules, preserving its native, bio-compatible structure. At the same time, such loading affects the morphology of the protein shell
Saturation effect for dependence of the electrical conductivity of planar oriented nematic liquid crystal 6CB on the concentration of Cu7PS6 nanoparticles
The influence of Cu7PS6 nanoparticles with the average size 117 nm on the dielectric properties of planar oriented nematic liquid crystal 6CB has been investigated within the frequency range 10(1) ...10(6) Hz and at the temperature 293 K. It has been shown that when changing the concentration of nanoparticles within the range 0 to 1 wt.%, the conductivity of the liquid crystal changes stronger than its dielectric permittivity. It has been shown that the electrical conductivity increases monotonously with increasing the concentration of nanoparticles. However, for this dependence a saturation effect is observed. The mechanism of this effect was proposed.info:eu-repo/semantics/publishedVersio
Extracting W Boson Couplings from the Production of Four Leptons
We consider the processes , including all possible charged lepton combinations, with
regard to measuring parameters characterizing the boson. We calculate at
what level these processes can be used to measure anamolous triple-boson
vertice coupling parameters for the cases of colliders at 500
and 1 center of mass energies.Comment: 13 pages,OCIP/C-93-
Particle Size Calibration Testing in the NASA Propulsion Systems Laboratory
The particle size characterization portion of the 2017 Propulsion Systems Laboratory (PSL) Cloud Calibration is described. The work focuses on characterizing the particle size distribution of the icing cloud as a function of simulated atmospheric conditions.These results will aid in upcoming ice crystal and supercooled liquid icing tests in PSL. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging instruments are presented. Experimental results indicate that the particle size distribution is primarily a function nozzle air and water pressures, and that air speed is not a significant effect for ice crystal clouds in PSL and both thermodynamic conditions and air speed are not significant effects for supercooled liquid water clouds in PSL
Particle Size Calibration Testing in the NASA Propulsion Systems Laboratory
The particle size characterization portion of the 2017 Propulsion Systems Laboratory (PSL) Cloud Calibration is described. The work focuses on characterizing the particle size distribution of the icing cloud as a function of simulated atmospheric conditions.These results will aid in upcoming ice crystal and supercooled liquid icing tests in PSL. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging instruments are presented. Experimental results indicate that the particle size distribution is primarily a function nozzle air and water pressures, and that air speed is not a significant effect for ice crystal clouds in PSL and both thermodynamic conditions and air speed are not significant effects for supercooled liquid water clouds in PSL
Progress with the Upgrade of the SPS for the HL-LHC Era
The demanding beam performance requirements of the High Luminosity (HL-) LHC
project translate into a set of requirements and upgrade paths for the LHC
injector complex. In this paper the performance requirements for the SPS and
the known limitations are reviewed in the light of the 2012 operational
experience. The various SPS upgrades in progress and still under consideration
are described, in addition to the machine studies and simulations performed in
2012. The expected machine performance reach is estimated on the basis of the
present knowledge, and the remaining decisions that still need to be made
concerning upgrade options are detailed.Comment: 3 p. Presented at 4th International Particle Accelerator Conference
(IPAC 2013
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
- …
