582 research outputs found

    Coherence effects in propagation through photonic crystals

    Get PDF
    We have analytically studied how a partially coherent quasi plane wave is affected by a photonic crystal structure including a grating. The analysis is presented for spatial and temporal cases showing the possibility to determine the coherence characteristics of the pulse.

    Spontaneous and Stimulated Raman Scattering near Metal Nanostructures in the Ultrafast, High-Intensity regime

    Full text link
    The inclusion of atomic inversion in Raman scattering can significantly alter field dynamics in plasmonic settings. Our calculations show that large local fields and femtosecond pulses combine to yield: (i) population inversion within hot spots; (ii) gain saturation; and (iii) conversion efficiencies characterized by a switch-like transition to the stimulated regime that spans twelve orders of magnitude. While in Raman scattering atomic inversion is usually neglected, we demonstrate that in some circumstances full accounting of the dynamics of the Bloch vector is required

    Harmonic generation and energy transport in dielectric and semiconductors at visible and UV wavelengths: the case of GaP

    Full text link
    We study inhibition of absorption, transparency, energy and momentum transport of the inhomogeneous component of harmonic pulses in dielectrics and semiconductors, at visible and UV wavelengths, focusing on materials like GaP. In these spectral regions GaP is characterized by large absorption, metallic behavior or a combination of both. We show that phase locking causes the generated inhomogeneous signals to propagate through a bulk metallic medium without being absorbed, that is occurs even in centrosymmetric materials via the magnetic Lorentz force, and that the transport of energy and momentum is quite peculiar and seemingly anomalous. These results make it clear that there are new opportunities in ultrafast nonlinear optics and nano-plasmonics in new wavelength ranges.Comment: 16 pages, 5 figures, 1 vide

    Enhanced second harmonic generation from resonant GaAs gratings

    Full text link
    We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.Comment: 8 page

    Oblique frozen modes in periodic layered media

    Full text link
    We study the classical scattering problem of a plane electromagnetic wave incident on the surface of semi-infinite periodic stratified media incorporating anisotropic dielectric layers with special oblique orientation of the anisotropy axes. We demonstrate that an obliquely incident light, upon entering the periodic slab, gets converted into an abnormal grazing mode with huge amplitude and zero normal component of the group velocity. This mode cannot be represented as a superposition of extended and evanescent contributions. Instead, it is related to a general (non-Bloch) Floquet eigenmode with the amplitude diverging linearly with the distance from the slab boundary. Remarkably, the slab reflectivity in such a situation can be very low, which means an almost 100% conversion of the incident light into the axially frozen mode with the electromagnetic energy density exceeding that of the incident wave by several orders of magnitude. The effect can be realized at any desirable frequency, including optical and UV frequency range. The only essential physical requirement is the presence of dielectric layers with proper oblique orientation of the anisotropy axes. Some practical aspects of this phenomenon are considered.Comment: text and 9 figure

    A Dynamical Model of Harmonic Generation in Centrosymmetric Semiconductors

    Get PDF
    We study second and third harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths in bulk and cavity environments. Second harmonic generation is due to a combination of symmetry breaking, the magnetic portion of the Lorentz force, and quadrupolar contributions that impart peculiar features to the angular dependence of the generated signals, in analogy to what occurs in metals. The material is assumed to have a non-zero, third order nonlinearity that gives rise to most of the third harmonic signal. Using the parameters of bulk Silicon we predict that cavity environments can significantly modify second harmonic generation (390nm) with dramatic improvements for third harmonic generation (266nm). This occurs despite the fact that the harmonics may be tuned to a wavelength range where the dielectric function of the material is negative: a phase locking mechanism binds the pump to the generated signals and inhibits their absorption. These results point the way to novel uses and flexibility of materials like Silicon as nonlinear media in the visible and UV ranges
    • …
    corecore