1,369 research outputs found

    Human Coenzyme Q(10) Deficiency

    Get PDF
    Ubiquinone (coenzyme Q(10) or CoQ(10)) is a lipid-soluble component of virtually all cell membranes and has multiple metabolic functions. Deficiency of CoQ(10) (MIM 607426) has been associated with five different clinical presentations that suggest genetic heterogeneity, which may be related to the multiple steps in CoQ(10) biosynthesis. Patients with all forms of CoQ(10) deficiency have shown clinical improvements after initiating oral CoQ(10) supplementation. Thus, early diagnosis is of critical importance in the management of these patients. This year, the first molecular defect causing the infantile form of primary human CoQ(10) deficiency has been reported. The availability of genetic testing will allow for a better understanding of the pathogenesis of this disease and early initiation of therapy (even presymptomatically in siblings of patients) in this otherwise life-threatening infantile encephalomyopathy

    A comprehensive approach to establish the impact of worksites air emissions

    Get PDF
    Worksite activities are time-limited events associated with continuous releases of airborne pollutants, such as carbon monoxide, particulate matter, and NOx, and they impact potentially vast areas. The side-effects on the environment can be severe, and they are subject of literature studies, with the final aim of proposing solutions that may improve the management of air emissions. No general assessment method or approach is yet available to estimate their effects on the environment and workers’ health. In this work, a general procedure that can be potentially applied to every type of worksite is proposed (i.e., construction sites, upgrading of chemical plants, road sites, etc..). The approach involves a detailed assessment of emissions and their expected pollutant concentrations. A dedicated mathematical model has been defined to assess pollutant emissions over time, consistent with all the different phases of foreseen activities. Emissions are defined on base of the GANTT descriptions of the activities and air pollutant dispersion is simulated with a dedicated model. Finally, the obtained results are evaluated against air quality thresholds as defined by laws and conditioning the human health risks for workers and citizens potentially exposed to pollutants

    Classical Effects of Laser Pulse Duration on Strong-field Double Ionization

    Full text link
    We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 10141016W/cm210^{14}-10^{16} W/cm^2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis

    Attosecond pulse shaping around a Cooper minimum

    Full text link
    High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.Comment: 5 pages, 5 figure

    Energy Management Strategy for Hybrid Multimode Powertrains: Influence of Inertial Properties and Road Inclination

    Get PDF
    Multimode hybrid powertrains have captured the attention of automotive OEMs for their flexible nature and ability to provide better and optimized efficiency levels. However, the presence of multiple actuators, with different efficiency and dynamic characteristics, increases the problem complexity for minimizing the overall power losses in each powertrain operating condition. The paper aims at providing a methodology to select the powertrain mode and set the reference torques and angular speeds for each actuator, based on the power-weighted efficiency concept. The power-weighted efficiency is formulated to normalize the efficiency contribution from each power source and to include the inertial properties of the powertrain components as well as the vehicle motion resistance forces. The approach, valid for a wide category of multimode powertrain architectures, is then applied to the specific case of a two-mode hybrid system where the engagement of one of the two clutches enables an Input Split or Compound Split operative mode. The simulation results obtained with the procedure prove to be promising in avoiding excessive accelerations, drift of powertrain components, and in managing the power flow for uphill and downhill vehicle conditions

    Inelastic scattering of broadband electron wave packets driven by an intense mid-infrared laser field

    Full text link
    Intense, 100 fs laser pulses at 3.2 and 3.6 um are used to generate, by multi-photon ionization, broadband wave packets with up to 400 eV of kinetic energy and charge states up to Xe+6. The multiple ionization pathways are well described by a white electron wave packet and field-free inelastic cross sections, averaged over the intensity-dependent energy distribution for (e,ne) electron impact ionization. The analysis also suggests a contribution from a 4d core excitation in xenon

    A Human-centric AI-driven Framework for Exploring Large and Complex Datasets

    Get PDF
    Human-Centered Artificial Intelligence (HCAI) is a new frontier of research at the intersection between HCI and AI. It fosters an innovative vision of human-centred intelligent systems, which are systems that take advantage of computer features, such as powerful algorithms, big data management, advanced sensors and that are useful and usable for people, providing high levels of automation and enabling high levels of human control. This position paper presents our ongoing research aiming to extend the HCAI framework for better supporting designers in creating AI-based systems

    Magnetic loss analysis in coaxial magnetic gears

    Get PDF
    This paper proposes a procedure for computing magnetic losses in coaxial magnetic gears. These magnetic structures are made of permanent magnets and ferromagnetic poles in relative motion transferring torque between two shafts in a contactless way. The loss computation in magnetic materials is crucial to define the system performance. The flux distribution inside the iron parts is computed by means of the finite element method and a model of iron losses taking into account the rotational nature of the flux loci is applied. The procedure highlights where the major loss sources are present and gives the opportunity to evaluate some corrective measures to reduce their effects. Particular attention is devoted to the 2D modeling in presence of permanent magnets segmentatio
    corecore