62 research outputs found

    Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale

    Get PDF
    BACKGROUND: Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. METHODS: For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. RESULTS: The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. CONCLUSIONS: We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field

    Computational modeling with spiking neural networks

    Get PDF
    This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific application, the functioning of the evolving spiking neural network (eSNN) classification method is presented in detail and the principles of numerous eSNN based applications are highlighted and discussed

    Spatial autocorrelation as a tool for identifying the geographical patterns of aphid annual abundance

    No full text
    1 A spatial autocorrelation analysis was undertaken to investigate the spatial structure of annual abundance for the pest aphid Myzus persicae collected in suction traps distributed across north-west Europe. 2 The analysis was applied at two different scales. The Moran index was used to estimate the degree of spatial autocorrelation at all sites within the study area (global level). The contributions of each site to the global index were identified by the use of a local indicator of spatial autocorrelation (LISA). A hierarchical cluster analysis was undertaken to highlight differences between groups of resulting correlograms. 3 Similarity between traps was shown to occur over large geographical distances, suggesting an impact of phenomena such as climatic gradients or land use types. 4 The presence of outliers and zones of similarity (hot-spots) and of dissimilarity (cold-spots) were identified indicating a strong impact of local effects. 5 Several groups of traps characterized by similarities in their local spatial structure (correlograms, value of Moran's I-i) also had similar values for land use variables (the area occupied by agricultural zones, forest and sea). 6 It is concluded that trap data can provide information about Myzus persicae that is representative of large geographical areas. Thus, trap data can be used to estimate the aerial abundance of this species, even if the suction traps are not regularly and densely distributed

    Formulation du contact avec adhérence en élasticité non linéaire entre deux solides déformables

    No full text
    International audienceWithin the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.Dans le cadre de la mécanique non linéaire, grâce à la cinématique du contact introduite par A. Curnier, Q.C. He et J.J. Téléga, nous proposons une formulation thermodynamique eulérienne, conduisant à un problème aux limites couplant le contact unilatéral, le frottement et l'adhérence entre deux solides hyperélastiques, l'adhérence étant décrite par une variable d'état interne introduite par M. Frémond. Dans le cas particulier du contact sans frottement entre un solide hyperélastique et un support rigide plan on établit un résultat d'existence pour le problème de minimum associé, quand l'évolution de l'intensité d'adhérence est donnée par une loi “statique”

    Geographical location, climate and land use influences on the phenology and numbers of the aphid, Myzus persicae, in Europe

    No full text
    Aim The purpose of this study was to improve understanding of the relationship between the spatial patterns of an important insect pest, the aphid Myzus persicae, and aspects of its environment. The main objectives were to determine the predominant geographical, climatic and land use factors that are linked with the aphid's distribution, to quantify their role in determining that distribution, including their interacting effects and to explore the ability of artificial neural networks (ANNs) to provide predictive models. Location The study focused on four spatial scales to account for the aphid data base characteristics and available land use data sets: Europe; a broad zone over Europe covering Belgium, Denmark, France, Ireland, Italy, The Netherlands, Scotland, Sweden and Wales (Regio data base coverage); North-West Europe (i.e. Belgium, France and the United Kingdom); and England with Wales. Methods Multiple linear regression (MLR) was used to identify the variables in the Geographic location, Climate and Land use groups, that explained significant proportions of the variance in M. persicae total annual numbers and Julian date of first capture. A variance partitioning procedure was used to measure the fraction of the variation that can be explained by each environmental factor and of shared variation between the different factors. Finally, ANNs were employed as an alternative modelling approach for the two largest study areas, i.e. Europe and the Regio data base coverage, to determine whether the relationship between aphid and environmental variables was better described by more complex functions as well as their ability to generalize to new data. Results Land use variables are shown to play a significant role in explaining aphid numbers. The area of agricultural crops, in particular oilseed rape, is positively correlated with M. persicae annual numbers. Among the climatic variables, rainfall is negatively correlated with aphid numbers and temperature is positively correlated. The geographical components also explain a significant part of aphid annual numbers. However, the variance partitioning procedure indicates that while each group has an effect, none is dominant. Aphid first capture is mainly explained by climate where rainfall tends to delay migration and warmer conditions tend to advance it. Climate accounts for the greatest part of the variance when considered separately from the other factors. The geographical and land use components also have a significant effect on first capture at each scale, but their direct contribution is negligible. The ability of the ANN models to generalize to new total numbers and phenological data compared with MLR models was less for Europe (9 and 6% increase in the variance accounted for, respectively) than for the Regio data coverage where an increase of 44% in the variance accounted for was observed. Main conclusions This research supports the hypothesis that climate, land use and geographical location play a role in determining patterns of aphid annual numbers and phenology. The ability of ANN models to predict aphid distribution is improved by the inclusion of temporal land use data. However, identification of the processes involved in such relationships is difficult due to numerous interactions between the environmental factors

    Analysis of spatial patterns at a geographical scale over north-western Europe from point-referenced aphid count data

    No full text
    The spatial analysis by distance indices (SADIE) technique was developed to evaluate the spatial pattern of point-referenced count data as well as the spatial association between two sets of data sharing the same point locations. This paper presents an analysis of spatial patterns in aphid count data and the association of these data with climate across north-west Europe. The paper tests the applicability of the technique to large geographical areas. Aggregation and cluster indices were calculated for the total annual abundance of the peach-potato aphid Myzus persicae (Sulzer) and for the annual mean rainfall and temperature at aphid monitoring sites. Association indices demonstrated the stability in time of aphid spatial structures and the correlation between aphid density and climate patterns. Groups of relatively large numbers of aphids, termed patches, and groups of relatively small numbers of aphids, termed gaps, were located and their mean size estimated. The aphid patterns were quite stable in time and the spatial patterns of temperature and rainfall were weakly associated with M. persicae annual abundance. Similarities were observed between the results of SADIE and those from the more widely used technique of spatial autocorrelation (SAC). However, the SADIE association index has the advantage of quantifying the possible associations between aphid data and the factors that determine population distribution. Thus, high temperature and low rainfall were identified as environmental factors that were positively associated with aphid abundance across north-west Europe
    corecore