297 research outputs found

    Effect of retrofit interventions on seismic fragility of Italian residential masonry buildings

    Get PDF
    In this paper, the vulnerability of ordinary unreinforced masonry (URM) buildings is analyzed, and the literature related to possible seismic retrofit interventions is reviewed in order to investigate their feasibility and effectiveness. These interventions are then simulated on a data-base of 445 buildings through Vulnus_4.0 software, that performs simplified mechanical analyses accounting for both global and local behavior of masonry buildings. The fragility of each building is assessed both in its as-built state and after the simulation of retrofit interventions. Fragility curves are then processed, and a fragility model for four building typologies is obtained for the as -built and the seismic retrofitted configurations. Lastly, mean damage maps are elaborated, and the performance of the proposed retrofit interventions is analyzed. The results of this work allow evaluating and comparing the improvement of seismic behavior brought by various retrofit in-terventions and could serve as a basis for further theoretical studies and for practical design in real cases

    Application of electro-fenton process for the treatment of methylene blue

    Get PDF
    The electrochemical removal of an aqueous solution containing 0.25 mM of methylene blue (MB), one of the most important thiazine dye, has been investigated by electro-Fenton process using a graphite-felt cathode to electrogenerate in situ hydrogen peroxide and regenerate ferrous ions as catalyst. The effect of operating conditions such as applied current, catalyst concentration, and initial dye content on MB degradation has been studied. MB removal and mineralization were monitored during the electrolysis by UV\u2013Vis analysis and TOC measurements. The experimental results showed that MB was completely removed by the reaction with \u2022OH radicals generated from electrochemically assisted Fenton\u2019s reaction, and in any conditions the decay kinetic always follows a pseudo-first-order reaction. The faster MB oxidation rate was obtained applying a current of 300 mA, with 0.3 mM Fe2+at T=35 \ub0C. In these conditions, 0.25 mM MB was completely removed in 45 min and the initial TOC was removed in 90 min of electrolysis, meaning the almost complete mineralization of the organic content of the treated solution

    Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-\u3b4- Ba0.5Sr0.5Co0.8Fe0.2O3-\u3b4composite as cathode for solid oxide fuel cells

    Get PDF
    Mixture of La0.6Sr0.4Co0.2Fe0.8O3-\u3b4 and Ba0.5Sr0.5Co0.8Fe0.2O3-\u3b4, was investigated as promising cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The two perovskites possess high catalytic activity for the oxygen reduction (ORR), although some problems related to their chemical and structural stability have still to be overcome in view of improving durability of the cell performance. The achievement of a stable and high-performing composite material is the aim of this study. In principle, chemical equilibrium at the LSCF-BSCF interface may be reached through ions interdiffusion during the sintering process, resulting in the chemical stabilization of the material. The composite-cathode deposited on Ce0.8Sm0.2O2-\u3b4 electrolyte was then investigated by Electrochemical Impedance Spectroscopy (EIS) as a function of temperature, overpotential and time. The results exhibited an interesting electrochemical behavior of the electrode toward oxygen reduction reaction. XRD analysis was performed to detect structural modification during thermal or operation stages and it was found that after the sintering the two starting perovskites were no longer present; a new phase with a rhombohedral La0,4Sr0,6FeO3-type structure (LSF) is formed. An improvement in composite cathode durability has been detected under the considered operating conditions (200 mAcm-2, 700 \ub0C) in comparison with the pure BSCF electrode. The results confirmed this new electrode as promising system for further investigation as IT-SOFC cathode

    Daedalus: A hardware signal analyser for Icarus

    Get PDF
    Icarus detector [1] is a large-volume (400 cm) liquid Argon TPC that requires continuous high rate sampling signal recording on each channel (about 50 000) to produce event images quite similar to the ones from bubble chambers. In order to optimize the memory usage, a signal feature extractor, that commands memory writing only upon signal detection, has been designed in VLSI CMOS. ( 1998 Elsevier Science B.V. All rights reserved

    A Comprehensive Approach to Improve Performance and Stability of State-of-the- Art Air Electrodes for Intermediate Temperature Reversible Cells: An Impedance Spectroscopy Analysis

    Get PDF
    Solid oxide fuel cells (SOFC) are devices for the transformation of chemical energy in electrical energy. SOFC appear very promising for their very high efficiency, in addition to the capability to work in reverse mode, which makes them suitable for integration in production units powered with renewables. Research efforts are currently addressed to find chemically and structurally stable materials, in order to improve performance stability during long-term operation. In this work, we examine different approaches for improving stability of two state-of-the-art perovskite materials, La0.6Sr0.4Co0.2Fe0.8O3-\uf064 (LSCF) and Ba0.5Sr0.5Co0.8Fe0.2O3-\uf064 (BSCF), very promising as air electrodes. Two different systems are considered: (i) LSCF and BSCF porous electrodes impregnated by a nano-sized La0.8Sr0.2MnO3-\uf064 layer and (ii) LSCF-BSCF composites with the two phases in different volume proportions. The study considers the results obtained by electrochemical impedance spectroscopy investigation, observing the polarisation resistance (Rp) of each system to evaluate performance in typical SOFC operating conditions. Furthermore, the behaviour of polarisation resistance under the effect of a net current load (cathodic) circulating for hundreds of hours is examined, as parameter to evaluate long-term performance stability

    Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)

    Get PDF
    In response to the European Union's initiative toward achieving carbon neutrality, the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches, Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution, especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters, using the Aspen Plus software. Through the simulation analysis, it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell, without generating waste liquids containing excessive pollutant concentrations. Specifically, by evaporating 27% of the first current and 10% of the second, it was estimated that 26.2 kg/m(3) and 9.7 kg/m(3) of green hydrogen could be produced, respectively. Considering the EU's target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams, this hydrogen production could meet anywhere from 0.4% to 20% of Italy's projected electricity demand

    Anti-PSMA CAR-engineered NK-92 Cells: An Off-the-shelf Cell Therapy for Prostate Cancer

    Get PDF
    Prostate cancer (PCa) has become the most common cancer among males in Europe and the USA. Adoptive immunotherapy appears a promising strategy to control the advanced stages of the disease by specifically targeting the tumor, in particular through chimeric antigen receptor T (CAR-T) cell therapy. Despite the advancements of CAR-T technology in the treatment of hematological malignancies, solid tumors still represent a challenge. To overcome current limits, other cellular effectors than T lymphocytes are under study as possible candidates for CAR-engineered cancer immunotherapy. A novel approach involves the NK-92 cell line, which mediates strong cytotoxic responses against a variety of tumor cells but has no effect on non-malignant healthy counterparts. Here, we report a novel therapeutic approach against PCa based on engineering of NK-92 cells with a CAR recognizing the human prostate-specific membrane antigen (PSMA), which is overexpressed in prostatic neoplastic cells. More importantly, the potential utility of NK-92/CAR cells to treat PCa has not yet been explored. Upon CAR transduction, NK-92/CAR cells acquired high and specific lytic activity against PSMA-expressing prostate cancer cells in vitro, and also underwent degranulation and produced high levels of IFN-\u3b3 in response to antigen recognition. Lethal irradiation of the effectors, a safety measure requested for the clinical application of retargeted NK-92 cells, fully abrogated replication but did not impact on phenotype and short-term functionality. PSMA-specific recognition and antitumor activity were retained in vivo, as adoptive transfer of irradiated NK-92/CAR cells in prostate cancer-bearing mice restrained tumor growth and improved survival. Anti-PSMA CAR-modified NK-92 cells represent a universal, off-the-shelf, renewable, and cost-effective product endowed with relevant potentialities as a therapeutic approach for PCa immunotherapy

    Role of neuronal and inducible nitric oxide synthases in the guinea pig ileum myenteric plexus during in vitro ischemia and reperfusion

    Get PDF
    Background Intestinal ischemia and reperfusion (I/R) injury leads to abnormalities in motility, namely delay of transit, caused by damage to myenteric neurons. Alterations of the nitrergic transmission may occur in these conditions. This study investigated whether an in vitro I/R injury may affect nitric oxide (NO) production from the myenteric plexus of the guinea pig ileum and which NO synthase (NOS) isoform is involved. Methods The distribution of the neuronal (n) and inducible (i) NOS was determined by immunohistochemistry during 60 min of glucose/oxygen deprivation (in vitro ischemia) followed by 60 min of reperfusion. The protein and mRNA levels of nNOS and iNOS were investigated by Westernimmunoblotting and real time RT-PCR, respectively. NO levels were quantified as nitrite/nitrate. Key Results After in vitro I/R the proportion of nNOSexpressing neurons and protein levels remained unchanged. nNOS mRNA levels increased 60 min after inducing ischemia and in the following 5 min of reperfusion. iNOS-immunoreactive neurons, protein and mRNA levels were up-regulated during the whole I/R period. A significant increase of nitrite/nitrate levels was observed in the first 5 min after inducing I/R and was significantly reduced by Nx-propyl-L-arginine and 1400 W, selective inhibitors of nNOS and iNOS, respectively. Conclusions & Inferences Our data demonstrate that both iNOS and nNOS represent sources for NO overproduction in ileal myenteric plexus during I/R, although iNOS undergoes more consistent changes suggesting a more relevant role for this isoform in the alterations occurring in myenteric neurons following I/R
    corecore