1,625 research outputs found
High-Order Multipole Radiation from Quantum Hall States in Dirac Materials
We investigate the optical response of strongly disordered quantum Hall
states in two-dimensional Dirac materials and find qualitatively different
effects in the radiation properties of the bulk versus the edge. We show that
the far-field radiation from the edge is characterized by large multipole
moments (> 50) due to the efficient transfer of angular momentum from the
electrons into the scattered light. The maximum multipole transition moment is
a direct measure of the coherence length of the edge states. Accessing these
multipole transitions would provide new tools for optical spectroscopy and
control of quantum Hall edge states. On the other hand, the far-field radiation
from the bulk appears as random dipole emission with spectral properties that
vary with the local disorder potential. We determine the conditions under which
this bulk radiation can be used to image the disorder landscape. Such optical
measurements can probe sub-micron length scales over large areas and provide
complementary information to scanning probe techniques. Spatially resolving
this bulk radiation would serve as a novel probe of the percolation transition
near half-filling.Comment: v2: 8 pages, 4 figure
Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube
We report the first observation of photon antibunching in the
photoluminescence from single carbon nanotubes. The emergence of a fast
luminescence decay component under strong optical excitation indicates that
Auger processes are partially responsible for inhibiting two-photon generation.
Additionally, the presence of exciton localization at low temperatures ensures
that nanotubes emit photons predominantly one by one. The fact that multiphoton
emission probability can be smaller than 5% suggests that carbon nanotubes
could be used as a source of single photons for applications in quantum
cryptography.Comment: content as publishe
Recommended from our members
Directional muon jet chamber for a muon collider (Groovy Chamber)
A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-{psi} coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas
Charge radii of the nucleon from its flavor dependent Dirac form factors
We have determined the proton and the neutron charge radii from a global
analysis of the proton and the neutron elastic form factors, after first
performing a flavor decomposition of these form factors under charge symmetry
in the light cone frame formulation. We then extracted the transverse
mean-square radii of the flavor dependent quark distributions. In turn, these
are related in a model-independent way to the proton and neutron charge radii
but allow us to take into account motion effects of the recoiling nucleon for
data at finite but high momentum transfer. In the proton case we find ,
consistent with the proton charge radius obtained from muonic hydrogen
spectroscopy \cite{pohl:2010,antog2013}. The current method improves on the
precision of the extraction based on the form factor
measurements. Furthermore, we find no discrepancy in the
determination among the different electron scattering measurements, all of
which, utilizing the current method of extraction, result in a value that is
consistent with the smallest extraction from the electron
scattering measurements \cite{Xiong:2019umf}. Concerning the neutron case, past
results relied solely on the neutron-electron scattering length measurements,
which suffer from an underestimation of underlying systematic uncertainties
inherent to the extraction technique. Utilizing the present method we have
performed the first extraction of the neutron charge radius based on nucleon
form factor data, and we find
Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers
This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution
A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout
We present prototype modules for a tracking detector consisting of multiple
layers of 0.25 mm diameter scintillating fibers that are read out by linear
arrays of silicon photomultipliers. The module production process is described
and measurements of the key properties for both the fibers and the readout
devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion
testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20
detected photons per minimum ionizing particle have been achieved, at a
tracking efficiency of more than 98.5%. Possible techniques for further
improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in
Nuclear Instruments and Methods in Physics Research Section A, Vol. 62
Clinical trial update: National Cancer Institute of Canada
The Breast Cancer Site Group (BCSG) of the National Cancer Institute of Canada (NCIC) Clinical Trials Group (CTG) has conducted a wide variety of clinical trials focussing on large phase III trials of adjuvant chemotherapy, adjuvant hormonal therapy, and optimal delivery of adjuvant radiation therapy. The Group has also fostered, together with the NCIC CTG Investigational New Drug (IND) Program, a series of phase II and phase I/II studies which will be carried through if possible, into the phase III setting
Spin entanglement using coherent light and cavity-QED
A scheme for probabilistic entanglement generation between two distant single
electron doped quantum dots, each placed in a high-Q microcavity, by detecting
strong coherent light which has interacted dispersively with both subsystems
and experienced Faraday rotation due to the spin selective trion transitions is
discussed. In order to assess the applicability of the scheme for distant
entanglement generation between atomic qubits proposed by T.D. Ladd et al. [New
J. Phys. 8, 184 (2006)] to two distant quantum dots, one needs to understand
the limitations imposed by hyperfine interactions of the quantum dot spin with
the nuclear spins of the material and by non-identical quantum dots.
Feasibility is displayed by calculating the fidelity for Bell state generation
analytically within an approximate framework. The fidelity is evaluated for a
wide range of parameters and different pulse lengths, yielding a trade-off
between signal and decoherence, as well as a set of optimal parameters.
Strategies to overcome the effect of non-identical quantum dots on the fidelity
are examined and the timescales imposed by the nuclear spins are discussed,
showing that efficient entanglement generation is possible with distant quantum
dots. In this context, effects due to light hole transitions become important
and have to be included. The scheme is discussed for one- as well as for
two-sided cavities, where one must be careful with reflected light which
carries spin information. The validity of the approximate method is checked by
a more elaborate semiclassical simulation which includes trion formation.Comment: 17 pages, 13 figures, typos corrected, reference update
Observation of Faraday rotation from a single confined spin
Ability to read-out the state of a single confined spin lies at the heart of
solid-state quantum information processing. While all-optical spin measurements
using Faraday rotation has been successfully implemented in ensembles of
semiconductor spins, read-out of a single semiconductor spin has only been
achieved using transport measurements based on spin-charge conversion. Here, we
demonstrate an all-optical dispersive measurement of the spin-state of a single
electron trapped in a semiconductor quantum dot. We obtain information on the
spin state through conditional Faraday rotation of a spectrally detuned optical
field, induced by the polarization- and spin-selective trion (charged quantum
dot) transitions. To assess the sensitivity of the technique, we use an
independent resonant laser for spin-state preparation. An all-optical
dispersive measurement on single spins has the important advantage of
channeling the measurement back-action onto a conjugate observable, thereby
allowing for repetitive or continuous quantum nondemolition (QND) read-out of
the spin-state. We infer from our results that there are of order unity
back-action induced spin-flip Raman scattering events within our measurement
timescale. Therefore, straightforward improvements such as the use of a
solid-immersion lens and higher efficiency detectors would allow for
back-action evading spin measurements, without the need for a cavity
- …