28,014 research outputs found

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Fluidized bed combustor modeling

    Get PDF
    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested

    A scheme for demonstration of fractional statistics of anyons in an exactly solvable model

    Full text link
    We propose a scheme to demonstrate fractional statistics of anyons in an exactly solvable lattice model proposed by Kitaev that involves four-body interactions. The required many-body ground state, as well as the anyon excitations and their braiding operations, can be conveniently realized through \textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to the perfect localization of anyons in this model, we show that a quantum circuit with only six qubits is enough for demonstration of the basic braiding statistics of anyons. This opens up the immediate possibility of proof-of-principle experiments with trapped ions, photons, or nuclear magnetic resonance systems.Comment: 4 pages, 3 figure

    Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Get PDF
    This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR), that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit

    Geostatistical analysis of an experimental stratigraphy

    Get PDF
    [1] A high-resolution stratigraphic image of a flume-generated deposit was scaled up to sedimentary basin dimensions where a natural log hydraulic conductivity (ln( K)) was assigned to each pixel on the basis of gray scale and conductivity end-members. The synthetic ln( K) map has mean, variance, and frequency distributions that are comparable to a natural alluvial fan deposit. A geostatistical analysis was conducted on selected regions of this map containing fluvial, fluvial/ floodplain, shoreline, turbidite, and deepwater sedimentary facies. Experimental ln(K) variograms were computed along the major and minor statistical axes and horizontal and vertical coordinate axes. Exponential and power law variogram models were fit to obtain an integral scale and Hausdorff measure, respectively. We conclude that the shape of the experimental variogram depends on the problem size in relation to the size of the local-scale heterogeneity. At a given problem scale, multilevel correlation structure is a result of constructing variogram with data pairs of mixed facies types. In multiscale sedimentary systems, stationary correlation structure may occur at separate scales, each corresponding to a particular hierarchy; the integral scale fitted thus becomes dependent on the problem size. The Hausdorff measure obtained has a range comparable to natural geological deposits. It increases from nonstratified to stratified deposits with an approximate cutoff of 0.15. It also increases as the number of facies incorporated in a problem increases. This implies that fractal characteristic of sedimentary rocks is both depositional process - dependent and problem-scale-dependent

    Megabits secure key rate quantum key distribution

    Full text link
    Quantum cryptography (QC) can provide unconditional secure communication between two authorized parties based on the basic principles of quantum mechanics. However, imperfect practical conditions limit its transmission distance and communication speed. Here we implemented the differential phase shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a 10-km fiber, which is tolerant against the photon number splitting (PNS) attack, general collective attacks on individual photons, and any other known sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure

    The Influence of Endogenous Nutrition Knowledge on Consumers’ Willingness-To-Pay for Grass-Fed Beef

    Get PDF
    The relationship between nutrition knowledge and consumers’ food behavior has been debated for years. This may be partially attributed to the difficulty introduce by endogeneity of nutrition knowledge in econometric modeling. Using grass-fed beef as a vehicle, this paper investigates the impacts of consumers’ nutrition knowledge on their willingness to pay by accommodating the endogeneity problem using instrumental variable approach. Our results suggest that consumers’ nutrition knowledge significantly influences their willingness to pay for grass-fed beef. Gender and education are influential factors of consumers’ nutrition knowledge level.Nutrition Knowledge, Endogeneity, Willingness to Pay, Agribusiness, Consumer/Household Economics, Food Consumption/Nutrition/Food Safety, Health Economics and Policy, Marketing,

    Taste and Visual Influences on Hispanic Consumers' Preferences and Willingness-to-Pay for Pasture-Fed Beef

    Get PDF
    Experimental Economics methods are used to determine Hispanic consumers’ sensory acceptance of pasture-fed beef and evaluate visual and taste influences on their overall preferences and willingness-to-pay (WTP). Two hundred and thirty-one Hispanic consumers in four experimental sites in Virginia participated in a laboratory experimental procedure where they visually examined and tasted pasture-fed and conventionally produced grain-fed beef, and then participated in a non-hypothetical Multiple Price Lists (MPL) experiment to determine their WTP. Hispanic consumers perceived significant differences between pasture-fed and grain-fed beef’s appearance and taste. Visual and taste acceptances are closely correlated to and significantly influence overall preferences. More than fifty percent of Hispanic consumers prefer pasture-fed beef and the majority of them consistently are willing to pay a price premium. Approximately, half consumers who generally prefer pasture-fed beef consistently consider the appearance and taste of pasture-fed beef more favorable but another half of them indicated discrepant visual and taste acceptances. Nevertheless, this inconsistency doesn’t lead to a lower WTP for pasture-fed beef.Pasture-Fed Beef, Experimental Economics, Multiple Price Lists, Preference, Willingness-to-pay, Agribusiness, Consumer/Household Economics, Demand and Price Analysis, Food Consumption/Nutrition/Food Safety, Livestock Production/Industries, Marketing,

    Suppression of Superconducting Critical Current Density by Small Flux Jumps in MgB2MgB_2 Thin Films

    Full text link
    By doing magnetization measurements during magnetic field sweeps on thin films of the new superconductor MgB2MgB_2, it is found that in a low temperature and low field region small flux jumps are taking place. This effect strongly suppresses the central magnetization peak leading to reduced nominal superconducting critical current density at low temperatures. A borderline for this effect to occur is determined on the field-temperature (H-T) phase diagram. It is suggested that the small size of the flux jumps in films is due to the higher density of small defects and the relatively easy thermal diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200
    • 

    corecore