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Geostatistical analysis of an experimental stratigraphy

Ye Zhang,1,2 Mark Person,1 Chris Paola,3 Carl W. Gable,4 Xian-Huan Wen,5

and J. Matthew Davis6

Received 21 October 2004; revised 13 May 2005; accepted 1 July 2005; published 16 November 2005.

[1] A high-resolution stratigraphic image of a flume-generated deposit was scaled up to
sedimentary basin dimensions where a natural log hydraulic conductivity (ln(K)) was
assigned to each pixel on the basis of gray scale and conductivity end-members. The
synthetic ln(K) map has mean, variance, and frequency distributions that are comparable
to a natural alluvial fan deposit. A geostatistical analysis was conducted on selected
regions of this map containing fluvial, fluvial/floodplain, shoreline, turbidite, and
deepwater sedimentary facies. Experimental ln(K) variograms were computed along the
major and minor statistical axes and horizontal and vertical coordinate axes. Exponential
and power law variogram models were fit to obtain an integral scale and Hausdorff
measure, respectively. We conclude that the shape of the experimental variogram depends
on the problem size in relation to the size of the local-scale heterogeneity. At a given problem
scale, multilevel correlation structure is a result of constructing variogram with data
pairs of mixed facies types. In multiscale sedimentary systems, stationary
correlation structure may occur at separate scales, each corresponding to a particular
hierarchy; the integral scale fitted thus becomes dependent on the problem size. The
Hausdorff measure obtained has a range comparable to natural geological deposits.
It increases from nonstratified to stratified deposits with an approximate cutoff of
0.15. It also increases as the number of facies incorporated in a problem increases.
This implies that fractal characteristic of sedimentary rocks is both depositional
process–dependent and problem-scale-dependent.

Citation: Zhang, Y., M. Person, C. Paola, C. W. Gable, X.-H. Wen, and J. M. Davis (2005), Geostatistical analysis of an

experimental stratigraphy, Water Resour. Res., 41, W11416, doi:10.1029/2004WR003756.

1. Introduction

[2] The correlation range estimated for natural log hy-
draulic conductivity (ln(K)) in sedimentary deposits has
been found to increase as the observation scale increases
[Gelhar, 1993]. Different interpretations have been offered
for the apparent growth in ln(K) correlation range. Gelhar
[1993] proposed a multilevel, nested model for lag separa-
tions ranging from core scale (10�1 m), fluvial deposit scale
(101 m), alluvial basin scale (103 m), up to interbasin scale
(105 m). The nested model contains multiple sills in a well-
defined hierarchical structure with increasing levels of ln(K)
variability corresponding to distinct ranges of lag separa-
tion. On the other hand, the ‘‘scale effect’’ observed in
solute dispersion is linked to the growth of ln(K) correlation
for which a power law variogram model was proposed
[Neuman, 1990, 1994]. Under this hypothesis, the ln(K)

random field is self-affine and constitutes a particular class
of stochastic fractal called fractional Brownian motion
(fBm). The spectral density of a fBm has a power law
dependence on the wave number with a power law exponent
(spectral slope) ranging from 1 to 3 [Turcotte, 1997].
Different stochastic fractals have also been proposed to
characterize ln(K) variability (e.g., fractional Gaussian noise
or fGn; fractional Levy motion or fLm and fractional Levy
noise or fLn for non-Gaussian processes) [Molz and Boman,
1993, 1995; Painter and Paterson, 1994; Liu and Molz,
1996, 1997]. The formulations for these models are based
on the stochastic time series where the property of interest
varies in one dimension. Both horizontal and vertical ln(K)
data have been analyzed for potential fractal behavior from
data collected over a variety of field scales. However, the
type of stochastic fractal deemed suitable for the data and
the power law exponent estimated often vary from site to
site as well as from horizontal to vertical directions.
Although it is generally agreed that the reason stochastic
fractals tend to describe heterogeneity in sedimentary rocks
is that stratification tends to occur at various scales [Painter,
2003; Ritzi et al., 2004], there is yet a clear explanation of
the kind of physical processes that create the ‘‘fractal’’
deposits [Molz et al., 2004].
[3] In a sedimentary environment where ln(K) correlation

is scale-dependent, which model is more appropriate? A
multilevel model with finite correlation ranges defined for
different sedimentary hierarchies, or stochastic fractals for
which the correlation range is infinite? These questions are

1Department of Geological Sciences, Indiana University, Bloomington,
Indiana, USA.

2Now at Department of Geological Sciences, University of Michigan,
Ann Arbor, Michigan, USA.

3Department of Geology and Geophysics, University of Minnesota,
Minneapolis, Minnesota, USA.

4Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, New Mexico, USA.

5Chevron Texaco, San Ramon, California, USA.
6Department of Earth Sciences, University of New Hampshire, Durham,

New Hampshire, USA.

Copyright 2005 by the American Geophysical Union.
0043-1397/05/2004WR003756

W11416

WATER RESOURCES RESEARCH, VOL. 41, W11416, doi:10.1029/2004WR003756, 2005

1 of 20



hard to answer given the often large uncertainties in
experimental ln(K) variograms constructed from field data.
For example, a variogram analysis was conducted on ln(K)
measured with borehole flowmeters over a small area (20 m
horizontal extent and 7 m vertical extent) and with slug tests
over a larger area (5 km horizontal extent and 50 m vertical
extent) within relatively well sorted glacial outwash sand-
stone in Cape Cod, Massachusetts [Springer, 1991;
Rajaram and Gelhar, 1995]. Both horizontal and vertical
experimental ln(K) variograms were computed, and in each
variogram there appeared two levels of variability where the
higher sill corresponded to the slug test data (Figure 1). Two
power law variogram models and a two-level exponential
model were fit onto the experimental variograms [Rajaram
and Gelhar, 1995]. Note that the conductivity used to
construct the variograms came from two data sets of
different support, i.e., slug test versus flowmeter, and the
slug test variogram was considered unreliable over short
lags [Rajaram and Gelhar, 1995]. Combined with the
measurement uncertainties associated with each type of
data, it is not clear whether these structures truly reflect
the natural ln(K) variation at this site. However, compared
to most field-based studies, the study described above was
based on exhaustive sampling campaigns. This points to the
limitation of using outcrop data to understand conductivity
heterogeneity and its correlation. To address these issues, a
complete knowledge of the ln(K) variations within the
deposit is preferred, requiring detailed sampling at large
spatial scales incorporating multiple facies types while each
local conductivity is measured at a consistent support.
[4] In this study, a geostatistical analysis was conducted

on a high-resolution cross-sectional image of a deposit
created in an experimental facility where multiple sedimen-
tary facies formed in response to a variety of depositional
processes. This image was first scaled up to sedimentary
basin dimensions. The image gray scale was then converted
to ln(K) based on a set of field-based conductivity end-
members. A synthetic basin-scale hydraulic conductivity
map was thus created with similar mean, variance and

frequency distribution to a natural fan deposit. For selected
regions (or ‘‘deposits’’) of this map representing similar or
different depositional environments, experimental ln(K)
variograms were computed using the complete conductivity
information. Under the alternative assumptions of second-
order stationarity and statistical self-affinity, exponential
and power law variogram models were fit onto the exper-
imental variograms, respectively. Both an integral scale and
a Hausdorff measure (power law exponent; related to the
spectral slope) were obtained for each variogram. To deter-
mine the directional sensitivity of the Hausdorff measure,
for each deposit, a Hausdorff measure was estimated from
the major or along-dip variogram, the minor or along-strike
variogram, the horizontal variogram, and the vertical vario-
gram. We explore the link between the correlation measures,
the sampling domain size and the underlying sedimentary
structure. We found that the Hausdorff measure of the
deposits lies within a range comparable to that of natural
geological deposits. It increases from nonstratified to strat-
ified deposits with a cutoff of around 0.15. It is insensitive
to the search direction in the nonstratified deposits. In the
stratified deposits, depending on the problem size in relation
to the size of the dominant heterogeneity, both the correla-
tion structure and the Hausdorff measure can change. Thus
the fractal ‘‘signature’’ of the sedimentary deposits is not
only depositional process-dependent but also problem-
scale-dependent. On the basis of the observed systematic
variations of the variogram structure, the field experimental
variograms (Figure 1), and the ‘‘scale effect’’of the ln(K)
correlation range, we proposed a hierarchical variogram
with local stationarity for a sedimentary system character-
ized with stratifications that occur at multiple scales.

2. Experimental Stratigraphy

2.1. Experimental EarthScape Facility

[5] The deposit analyzed in this study was created in the
Experimental EarthScape facility (XES) at the Saint
Anthony Falls Hydraulics Laboratory, University of Min-

Figure 1. The experimental ln(K) variograms (dots) computed in the horizontal and vertical directions at
the Cape Cod site [after Rajaram and Gelhar, 1995]. Two power law variogram models and a two-scale
exponential model were fit [Rajaram and Gelhar, 1995]. Here h is the lag distance in a given direction.
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nesota [Schneider, 1998; Paola, 2000; Paola et al., 2001;
Heller et al., 2001]. Using fine quartz sand and coal as
proxies for coarse- and fine-grained (clay) sediments, sed-
imentary packages were generated within a three-dimen-
sional flume fitted with a flexible, subsiding floor. The grain
size for the fine quartz sand is nearly uniform at 120 mm; the
coal is coarser and poorly sorted. The specific gravity of this
sand is 2.65 while that of the coal is 1.3. The coal is not
intended to be an exact mechanical analog of a particular
size class. The sand-coal mixture is a simple bimodal
mixture that displays strong and readily measurable hydrau-
lic sorting by processes analogous to those that produce size
sorting in nature.
[6] A prototype experiment was conducted in 1996

creating a 1.6 m long, 1.0 m wide, and 0.8 m thick deposit
(Figure 2a). At the onset of the experiment, the tank was
filled with pea-size gravel covered by a rubber membrane.
From a single source location, a 50:50 mixture of coal and
fine quartz sand was introduced into the flume with water.
The sediment flux rate was controlled to keep pace with
the subsidence rate of the basement (Figure 2b). During the
experiment, the elevation of the standing water at the

downstream side was varied in a sinusoidal manner to
represent eustatic sea level fluctuations in a shallow marine
environment (‘‘base level’’; Figure 2c). Two sea level cycles
were imposed (Figure 2c): during the first 10 hours, the sea
level was constant and the shoreline position was near the
mid basin; from 10 to 40 hours, the sea level finished a
long-period cycle of first dropping and then rising, the
shoreline correspondingly first extended to further down-
stream and then retreated upstream; from 46 to 48 hours, a
short-period cycle of more rapid sea level change was
imposed, and both shoreline and turbidite deposits formed.
Thus, over time, changes in sea level caused large-scale
shoreline regression and transgression. Within the flume,
sediment transport was dominated by fluvial, shoreline
and submarine processes occurring over varying spatial
and temporal scales, forming channels and floodplains and
creating turbidity currents in the adjacent ‘‘sea’’. At the
distal end of the flume, coal particles settled out of the open
water as fine-grained clay or silt would settle in an open
ocean. Within the fluvial environment, auto cyclic channel
switching induced shorefront delta avulsions, while the
imposed basement subsidence influenced the patterns of

Figure 2. (a) The prototype experimental deposit (1.6 � 1.0 � 0.8 m3). Dark and light particles are
composed of coal and sand, respectively. At the left edge is standing water, opposite to the upstream
sediment/water feeder. (b) A schematic diagram of the system of funnels connected to the tank basement
which controls subsidence. Subsidence is induced by firing a pulse of high-pressure water into the elbow
pipe, knocking a small volume of gravel into an exhaust line. (c) A cross-sectional stratigraphic image
from the prototype experiment. The outline of the deposit is indicated, outside of which there are no data.
Major depositional environments are identified along with major faults (black lines) and unconformities
(white lines). The left diagram is the imposed ‘‘sea level’’ fluctuations during the experiment. The sandy
facies correspond to lower sea levels (regression); the darker facies correspond to higher sea levels
(transgression). See color version of this figure in the HTML.
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sediment deposition by allowing faults to develop. The
prototype deposit formed in response to the combined
forcing of sediment input, basement subsidence, and sea
level change; the dominant processes that formed the
deposit are comparable to those forming a natural fluvial/
deltaic system. A more detailed sedimentological analysis
of this experiment is given by Paola [2000] and Paola et al.
[2001].
[7] After the deposit was produced, it was dissected along

a face parallel to the average transport direction, 210 mm
from the centerline. A high-resolution photograph of
the sediment face was taken and digitized (Figure 2c). This
two-dimensional image contains 1000 pixels in the
horizontal direction and 600 pixels in the vertical direction.
A gray scale is associated with each pixel, representing an
average light reflection from about 100 sand-sized particles.
It varies between 0 and 232, corresponding to the highest
coal and sand fractions, respectively. Thus lighter colors
correspond to sandy sediments deposited in high-energy
subaerial fluvial or submarine mass flow environments;
darker colors correspond to sediments with higher propor-
tions of coal deposited in either a floodplain or deepwater
setting. This image provides a detailed characterization of
the sedimentary heterogeneity within the deposit. Not only
is heterogeneity observed to vary at different scales, but the
local sedimentary structures (e.g., channel and floodplain
deposits, turbidite, deepwater deposits) were created by
various depositional processes. The stratigraphic heteroge-
neity is thus organized within the framework of sedimentary
architectures, or structured heterogeneity. Further dissection
of the deposit reveals that most of the fluvial sands and
floodplain clays are laterally continuous, in the direction
perpendicular to sediment transport. This is because sheet
flow tended to dominate during the formation of much
of the deposit. Thus the image, though two-dimensional,
has captured most of the sedimentary heterogeneity of the
three-dimensional deposit.

2.2. Basin-Scale ln(K) Map

[8] The experimental deposit has geologically unrealistic
dimensions. The bedding angle of the stratified deposit
sometimes exceeds 30�, rarely observed in natural sedimen-
tary systems. To ensure a viable dimension/gradient for a
hydraulic conductivity map, the stratigraphic image was
scaled up to 100 km in the horizontal direction and 3 km in
the vertical direction (Figure 3a). This was accomplished by
assuming an appropriate length scale for each pixel (Dx =
100 m; Dz = 5 m). The basin dimensions were chosen so
that the average topographic slope is 1/100, and the basin
length to depth ratio is 50:1, falling within the observed
range of natural systems [Belitz and Bredehoeft, 1990].
After the image scale-up, the average bedding angle is less
than 1�, consistent with the observed regional dip in fluvial/
deltaic deposits. Other considerations also prevent direct
evaluation of the physical deposit. For example, image scale
up is needed to create a hydrologically definable system
since a hydraulic conductivity cannot be associated with a
single pixel which corresponds to a very small volume of
the deposit. This volume is beneath the typical scale of a
representative elementary volume (REV) at which hydro-
logical parameters including the hydraulic conductivity are
defined [Bear, 1972]. For selected deposits, an effective
hydraulic conductivity was estimated using a numerical

flowmethod and aGaussian-based analytic-stochasticmodel.
These analyses also require a real REV size to be associated
with each pixel. Although the upscaled dimensions of
our basin are somewhat arbitrary, our choice of dimensions
is similar to that of Pratson and Gouveia [2002] who
generated synthetic seismic velocity map based on
the XES deposit. It is important to point out that in
this study, both the correlation structure of the relative
ln(K) variograms and the Hausdorff measure are not
affected by the chosen scale-up ratio. This can be easily
verified by changing the lag units for the variograms
(representing different scale-up ratios) and observing the
same correlation structure of the variograms with the same
power law slope.
[9] The scaled-up stratigraphic heterogeneity was trans-

lated to conductivity heterogeneity based on linear interpo-
lation of the gray scale and two natural log hydraulic
conductivity end-members [ln(Ksand), ln(Kclay)]:

ln Kð Þ ¼ g

232
ln Ksandð Þ � ln Kclay

� �� �
þ ln Kclay

� �
ð1Þ

where g is the gray scale value (0 � g � 232); ln(Ksand) and
ln(Kclay) correspond to the highest and lowest gray scale
values, respectively. In essence, equation (1) estimates
hydraulic conductivity based on sediment sand/clay ratios.
However, equation (1) is nonunique. Other methods have
been employed to relate permeability to petrophysical
parameters. For example, Koltermann and Gorelick [1995]
(hereinafter referred to as the KG model) developed an
empirical model relating grain size characteristics and
packing style to permeability. However, for sand/clay
mixtures, our log linear model does an equally good job
of matching the permeability data as that of KG model
[Koltermann and Gorelick, 1995, p. 3291, Figure 6]. In
some regards, our model is more realistic. For example,
when the porosity of the coarse-grained sediments is less
than 0.25, the KG model predicts increasing permeability
with increasing clay content which is counterintuitive. It
is also worth noting that our approach of relating image
gray scale to log permeability is not new. Tidwell and
Wilson [2002] found that the spatial structure of natural
log permeability is strongly correlated to that of the
digital gray scale image of the respective rock face.
Their permeability was obtained with thousands of
centimeter-scale minipermeameter measurements, indicat-
ing that visual image of rock faces can be used to
delineate the spatial pattern of local (log) conductivity
variations.
[10] With equation (1), only one ln(K) value is interpo-

lated from each pixel gray scale. We thus assume that each
scaled-up pixel represents a local-scale, homogenous, and
isotropic porous media upon which a local hydraulic con-
ductivity is defined. The selection of the hydraulic conduc-
tivity end-members is based on an unconsolidated alluvial
fan deposit in the Livermore Valley of California [Lu et al.,
2002]. Hydraulic conductivity measurements at this
site indicate a multimodal frequency distribution with 4
major facies groups: floodplain, levee, debris flow and
channel (Figure 3b). Each facies group has a ln(K) distri-
bution that is approximately normal; ln(K) (in m/d) from
all facies has a range of �6 to 1.75. Accordingly, these
values were selected as the conductivity end-members for
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Figure 3. (a) An interpolated basin-scale ln(K) map (in m/d) based on equation (1). The locations of the
sampled regions are indicated as well as the sample ID. Deposits created in similar depositional
environment are linked by lines. (b) The ln(K) (m/d) frequency distribution based on measurements from
an alluvial fan (after Lu et al. [2002], with kind permission of Springer Science and Business Media).
(c) ln(K) frequency distribution of Figure 3a along with summary statistics. Four lognormal populations
were identified, superimposed with four normal density curves with the mean ln(K) in parenthesis.
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equation (1). After the image interpolation, a synthetic ln(K)
map was created for which a global ln(K) histogram was
also constructed (Figure 3c). Compared to the fan deposit,
this map is also multimodal with four approximately
normal distributions. Although each population of the
fan deposit corresponds to a distinct facies, the experi-
mental deposit demonstrates a more mixed frequency
distribution. Compared to the fan deposit, a wider range
of depositional processes was represented in the experi-
mental deposit. Nevertheless, both sedimentary systems
were created by multiple depositional processes, be it at an
experimental flume scale or at the natural scale of an
alluvial fan. Both systems have a multimodal ln(K) distri-
bution with each mode likely characterized by a normal
density. Although the sediment transport processes in both
systems may be at times chaotic, some intrinsic and
fundamental processes are at work that give rise to such
material distribution.
[11] This approach of assigning petrophysical parameters

based on image gray scale and typical end-member property
of sand and clay was also adopted by Pratson and Gouveia
[2002]. In this study, the hydraulic conductivity of the sand
and coal used in the experiment is around 10�6 m/s and
10�3 m/s, respectively, corresponding to the conductivity
range of fine to medium sand [Freeze and Cherry, 1979]. If
these values were chosen as the end-member conductivity,
the synthetic map would become too permeable compared
to natural sand/clay systems (e.g., the fan deposit has an
approximate conductivity range of 10�4 to 10�8 m/s). More
importantly, the conductivity map would be opposite to a
natural system, i.e., the darker deposits representing clay
would be more permeable than the sandy deposits. Note
that in Figure 3c, the low-conductivity distributions
correspond to the more distal deposits with higher ‘‘clay’’
content. After the image interpolation, the synthetic map
displays overall univariate characteristics (the extreme, the
mean, and the spread of ln(K)) comparable to the fan
deposit. The standard deviation of ln(K) is 2.02, falling
within the observed range [0.4, 4.0] of geological media
[Gelhar, 1993, p. 2].
[12] In summary, the scale-up of an image of the XES

deposit to sedimentary basin dimensions and the conduc-
tivity interpolation based on image gray scale and a chosen
set of conductivity end-members have produced a basin-
scale ln(K) map with geologically realistic dimensions and
gradients. It preserves all scales of the structured strati-
graphic heterogeneity, while each local conductivity is
defined over a consistent data support. Ln(K) of this map
has a variability range and frequency distribution compara-
ble to a natural alluvial fan. Within a hierarchical framework
each depositional environment in this map can be charac-
terized as a geological formation within which distinct
facies or facies assemblages exist. For example, if the
fluvial/floodplain deposit is characterized as a terrestrial
fluvial formation, the individual sand and clay units can be
characterized as fluvial and floodplain facies, respectively
(Figure 2c). The thicker, sand-rich units of the turbidite
deposit can be characterized as submarine mass flow facies,
while the interbedded clay characterized as deepwater
facies. The ln(K) map is also statistically heterogeneous,
i.e., the ln(K) mean, variance, and correlation structure
change as the depositional environment changes. This

natural log conductivity map is the foundation for the
geostatistical analysis presented below.

3. Geostatistical Analysis

3.1. Data Sampling and Univariate Analysis

[13] Both univariate and bivariate analyses were con-
ducted on 13 selected regions of the ln(K) map, each region
was selected from a distinct depositional environment
(Figure 3a). Each region or sample is rectangular and of
varying sizes. The size was selected to be as large as
possible without crossing into a different depositional
environment. Samples 1, 4, 5 represent the shoreline depos-
its created during episodes of marine transgression. Samples
2 and 3 represent the upstream fluvial deposits that are
predominantly sandy. Compared to sample 2, sample 3 is
weakly stratified as well as populated with some high-K
faults. Samples 6 and 7 are part of turbidite deposits created
during the last sea level rise. Samples 8, 9, 10 represent the
downstream fluvial/floodplain deposits. Sample 11 repre-
sents the upstream fluvial/floodplain deposits that are
extensively faulted. Samples 12 and 13 represent low-
energy deepwater deposits. For each sample, the mean
and variance of ln(K) were computed and the ln(K) nor-
mality was tested with a Kolmogorov-Smirnov test. The
normality test was conducted on random subsets of each
sample at 95% confidence interval. Since random sampling
does not preclude correlated data, multiple tests were
conducted, each selecting a different subset randomly.
Whether data pass the normality test was determined by
the expected outcome. Note that although the entire ln(K)
map is statistically heterogeneous, locally within a deposi-
tional environment, the material property is approximately
statistically homogeneous. For most samples, the ln(K)
variance is less than 1.0 (see section 4), within the range
of applicability for the perturbation-based stochastic
theories to estimate the effective properties. Each sample
representing a particular depositional environment incorpo-
rates only one or two facies types of either sand-rich or clay-
rich units. The normality test is necessary since the selected
analytic-stochastic theory for the estimation of effective
conductivity requires that the local conductivity is lognor-
mally distributed (see section 5).

3.2. Variogram Analysis

[14] To characterize ln(K) spatial correlation, an experi-
mental variogram map was computed for each sample using
GSLIB program varmap [Deutsch and Journel, 1992]. The
variogram map was used to indicate the possible existence
of statistical anisotropy in a sample, and if it exists, to
further identify the directional angle of the statistical axis.
Using GSLIB gamv program, two directional variograms
were then computed along the major/minor statistical axes
which correspond to the directions of maximum/minimum
ln(K) continuity, respectively. Note that since many of the
samples are stratified, the direction of the maximum conti-
nuity is usually along the bedding plane. The experimental
variograms constructed along this direction are referred to
as major or along-dip variograms, while those perpendicular
to bedding (minimum continuity) are referred to as minor or
along-strike variograms. Using GSLIB gam program, two
additional directional variograms were computed along
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the horizontal/vertical coordinate axes; these variograms are
thus the horizontal/vertical variograms. Following the angle
convention in GSLIB, we use ‘‘azimuth’’ to indicate the
angle between the search direction and the vertical axis (z).
Note that in the directional variograms, the unit lag distance
is chosen to be approximately the data spacing for a given
direction. The maximum lag distance is chosen to be half of
the sample domain length scale, eliminating any ‘‘edge
effects’’ due to large-scale trends which would not be
representative of the correlation structure in the sample
(A.G. Journel, personal communication, 2003). For the
major variograms, the search strategy utilizes a high angular
tolerance (45�) and a narrow bandwidth (usually around unit
sand/clay thickness) [Englund and Sparks, 1988]. This
ensures that more data pairs could be found at smaller lags
to reduce the nugget effect near the origin while the vario-
gram shape is distinguished by preventing too much data
mixing across facies types. Moreover, given the large
number of data points for each sample, each variogram
estimate is computed from a few hundred data pairs to up to
tens of thousands of pairs, the coefficient of variation of
each estimate is small, thus no confidence interval is
computed. Both the variogram map and the directional
variograms are also normalized by the sample variance
(s2), which is identified by a line at 1.0 in the directional
variograms. Note that although s2 is often used as an
estimator for the variogram sill (theoretical population
variance s2), s2 in general underestimates the sill in a
stationary random field (SRF), especially if the data are
collected over an area smaller than the correlation range
[Chilès and Delfiner, 1999]. Therefore, if an experimental
variogram displays a sill, it is used as the estimator for s2

rather than using the sample variance. Following conven-
tional practice, the sample variance is but a convenient
choice to construct the relative variograms.
[15] Two variogram models are fit onto each experimen-

tal variogram: an exponential function assuming SRF; a
power law function assuming nonstationary, self-affine RF.
The exponential variogram model is commonly given as

g hð Þ ¼ C0 þ C1½1� exp �h=lð Þ	 ð2Þ

g(h) is the directional variogram; h and l are the lag
separation and integral scale along a given direction,
respectively. C0 is a ‘‘nugget effect’’ to model the variogram
discontinuity near the origin. C1 is a model coefficient. The
model sill is C0 + C1, used for estimation of s2. Note that
the model parameters reported in this study are relative to
the sample variance, e.g., C0/s

2, C1/s
2. The nugget effect

may occur due to either measurement errors or existence of
small-scale variability beneath the sampling grid (e.g.,
sample spacing > correlation range of the conductivity
‘‘microstructure’’) [Chilès and Delfiner, 1999]. The power
law variogram model characterizes a self-affine stochastic
fractal and is often given as:

g hð Þ ¼ c 
 h2H 0 < H < 1ð Þ ð3Þ

c is a constant, H is the Hausdorff measure. Applying a
scaling factor (s) to lag separation, g(s 
 h) = s2H 
 g(h), the
power law variogram model is thus scale-invariant. This
means that the variogram functions at different problem

scales have a similar ‘‘appearance’’ when subjected to
appropriate renormalization. The power law variogram
further plots as a straight line in a log-log plot, therefore a
characteristic length cannot be associated with it. The
Hausdorff measure is used to characterize the long-term
persistence of a stochastic fractal [Turcotte, 1997]: when 0 <
H < 0.5, the increment of the process is negatively
correlated or antipersistence (e.g., increase in property
values tends to be followed by a decrease, vice versa); when
0.5 < H < 1, the increment is positively correlated or
persistence (e.g., increase tends to be followed by further
increase); when H = 0.5, the increment becomes uncorre-
lated white noise. The magnitude of the Hausdorff measure
thus indicates the ln(K) correlation characteristics, e.g.,
whether ln(K) tends to change over space or noisy data
(antipersistence) or remains relatively smooth (persistence).
Moreover, if a one-dimensional process is a stochastic
fractal, its spectral density S(k) has a power law dependence
on the wave number k [Turcotte, 1997]

S kð Þ / k�b ð4Þ

b is referred to as the spectral slope and is related to the
Hausdorff measure via

b ¼ 2Hþ 1 ð5Þ

Like the Hausdorff measure, the magnitude of spectral slope
indicates the smoothness or roughness of a series. As the
spectral slope increases, ln(K) series becomes smoother.
Since physical properties are usually defined over a finite
range of scales, stochastic fractals are also bounded. This is
reflected in a spectral density that is distributed over a finite
range of wave numbers [kmin, kmax]: kmin corresponds to
domain size cutoff; kmax corresponds to sample spacing
cutoff.
[16] Although one of our reviewers suggested that

we conduct an indicator variogram analysis in association
with a hierarchical decomposition [e.g., Ritzi et al.,
2004], in the current study, we present the results of the
continuous ln(K) variogram analysis for several reasons:
(1) For a hierarchical analysis, artificial cutoff values have
to be employed to turn the continuous ln(K) map to an
indicator map, e.g., facies type. The hierarchical analysis
requires the estimation of facies proportions, local subunit
statistics, and transition probabilities. These statistics would
be difficult to estimate given our numerous sand/clay
stratifications while each strata is often very thin. (2) We
investigate the impact of problem size on ln(K) correlation
characteristics whereby the observed systematic change in
the correlation measures (variogram structure, Hausdorff
measure) gives hints to what kind of behavior may arise
given a finite sampling domain. To compare the spectral
slope of the ln(K) map with that of natural deposits, the
continuous ln(K) variogram is also needed. (3) The variance
and correlation range of the continuous ln(K) variogram are
used to infer effective hydraulic conductivity for selected
deposits with a Gaussian-based analytic-stochastic model.
To our knowledge, there are no theories that can predict
effective conductivity based on results from a hierarchical
analysis. (4) The hierarchical identity developed by Ritzi
et al. [2004] is verified by constructing continuous
ln(K) variogram, so the analysis conducted herein is a
necessary component of the indicator-based hierarchical
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analysis. Such an analysis can be the subject of a follow-up
study.

4. Results

4.1. Univariate Analysis

[17] The normality test conducted on each sample ln(K)
field indicates that for the given sample size, fluvial and
fluvial/floodplain deposits pass the test while the shoreline
(sample 5), turbidite (samples 6 and 7) and deepwater
deposits (sample 12) fail the test (Table 1). While the
histogram of the turbidite deposit tends to be bimodal, the
deepwater deposits have positive skews, distinctively dif-
ferent from the rest of the sandy deposits with zero to
negative skew (not shown). Transport into the ‘‘ocean’’
basin and the subsequent settling of a small amount of sands
is presumed to be responsible. The faulted fluvial/floodplain
deposit of sample 11 consistently passes the test despite the
fact that it is intersected by extensive high-conductivity
faults. Moreover, the univariate characteristics of the selected
samples can be expected to be scale-dependent. Ritzi et al.
[2004] presented a schematic diagram showing a hypo-
thetical fluvial point bar deposit. Their bimodal ln(K)
histogram at the ‘‘fluvial assemblage’’ scale evolved into a
multimodal distribution when an entire depositional system
was incorporated, not unlike the comparison of the bimodal
turbidite to the global ln(K) histogram which contains
several normal populations (Figure 3c).

4.2. Exponential Model/Stationary RF

[18] Assuming second-order stationarity for each sample,
an exponential model was fit to the first structure (leveling
off) of the major and minor variograms (Figure 4). An
integral scale is obtained which is the lag separation when
the normalized covariance is e�1. The sample domain size,
the associated depositional environment and the exponential
model parameters are listed in Table 2. Most of the samples
display statistical anisotropy (correlation range in one
direction is longer than the other), while the azimuth angle
of the major statistical axis reflects the average angle of the
bedding plane within a sample. In general, the integral
scales estimated along the major axis (lmax) are orders of
magnitude greater than those estimated for the minor axis

(lmin). The statistical anisotropy ratio (lmax/lmin) ranges
from 35 � 77 (fluvial), 100 � 240 (shoreline), to 150 � 500
(fluvial/floodplain), generally comparable to those estimated
from natural sedimentary rocks [Deutsch, 2002]. Note that
the two-dimensional image used for this analysis cuts
through the fluvial channels and shoreline deposits. This
may result in apparently separate or discontinuous units,
masking any three dimensional processes (e.g., channel
switching; delta front avulsion). For some deposits, the
statistical anisotropy ratio may be higher if a three-dimen-
sional ln(K) map can be constructed, although a variogram
analysis may fail to capture such nonlinearity [Caers and
Zhang, 2004]. In contrast, the deepwater deposits have
the shortest integral scales and model fitting returns a
statistical anisotropy ratio of 20, equivalent to the scale-up
ratio (Dx/Dz = 20). The original experimental-scale deep-
water deposits are thus isotropic, which is linked to the
direction-independent depositional style of coal settling.
Compared to natural deepwater deposits which often have
high statistical anisotropy ratio (80 � 350) [Deutsch, 2002],
the experimental deposit has characteristics of a recently
formed unconsolidated system. Similarly, dividing the an-
isotropy ratio by the scale-up ratio, we can determine the
statistical anisotropy in the original deposit as 2 � 4 for
fluvial deposits, 2 � 12 for shoreline deposits, and 7.5 �
25 for fluvial/floodplain deposits. Clearly, such ratios are
rarely seen in natural fluvial/deltaic systems, image scale-up
is thus a natural choice to create a ln(K) map with
statistically realistic properties.
[19] The above analysis evaluates the directional

variograms along the major/minor statistical axes of anisot-
ropy. However, in field investigations, the dominant sedi-
mentary structure is often beyond direct observation and the
actual bedding angles may be less certain. Coupled with
data scarcity, a variogram map is rarely useful to identify the
statistical axes. Since sedimentary deposits usually have low
incline, it is common practice to compute the major vario-
grams along the horizontal direction and the minor vario-
gram along the vertical direction [e.g., Sudicky, 1986;
Rehfeldt et al., 1992; Desbarats and Bachu, 1994; Rajaram
and Gelhar, 1995]. If the bedding plane is perfectly level,
the horizontal variogram will usually correspond to the
direction of maximum correlation. However, if the bedding

Table 1. Results of the Kolmogorov-Smirmov Normality Test Conducted on Random Subsets of Each Samplea

Sample Test 1b Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Expected Outcome Comments

1 0 0 1 0 1 1 0 0 0 1 0.4 normal
2 0 0 0 0 0 0 0 1 0 0 0.1 normal
3 0 0 0 0 0 0 0 0 0 1 0.1 normal
4 1 0 1 0 1 1 0 0 1 0 0.5 inconclusive
5 1 1 1 1 1 1 1 1 1 1 1 nonnormal
6 1 1 1 1 1 1 1 1 1 1 1 nonnormal
7 1 1 1 1 1 1 1 1 1 1 1 nonnormal
8 0 0 0 0 0 0 0 0 0 0 0 normal
9 1 0 0 0 0 0 0 0 0 0 0.1 normal
10 0 0 0 0 0 0 0 0 0 0 0 normal
11 0 0 0 0 0 0 0 0 0 0 0 normal
12 1 1 1 1 1 1 1 1 1 1 1 nonnormal
13 0 1 1 1 1 0 0 1 0 0 0.5 inconclusive

aThe subset size is 100 for all samples. For each sample, the test was repeated 10 times, each time drawing a different subset randomly.
bNull hypothesis: ln(K) comes from a normal distribution; if 0, do not reject the null hypothesis at significance level 5%; if 1, reject the null hypothesis at

significance level 5%. Using 0.5 as a cutoff for the expected outcome of the test, the normality test is considered passed for the outcome less than 0.5; not
passed for outcome greater than 0.5; inconclusive if the outcome is equal to 0.5.
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plane is inclined as in most fluvial/deltaic environments and
the problem scale is large, how representative is the hori-
zontal variogram of the actual major variogram? To provide
some insights, both the horizontal (azimuth = 90�) and the

major (azimuth = 88.96�) variograms were computed for
sample 8, using gam and gamv programs, respectively
(Figure 5a). Though the difference in search angle is small,
the horizontal variogram shows nested structure due to the

Figure 4. The experimental relative ln(K) variograms (dots) computed along the major and minor
statistical axes for samples 1 � 12: shoreline (1, 4, and 5), upstream fluvial (2 and 3), turbidite (6 and 7),
fluvial/floodplain (8, 9, 10, and 11), and deep water deposit (12). The azimuth angle of each variogram is
indicated. An exponential model (curve) is fit onto each variogram with model parameters listed in Table
2. For the minor variograms of samples 8, 9, and 10 a large-scale exponential model is also fit (dashed
curve). For sample 11, 88.54� indicates average bedding angle; 93.18� indicates average fault orientation.
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incorporation of data pairs of mixed facies types, i.e., the
horizontal plane intersects the sandy and clayey units by 1�.
The major variogram is more exponential-type for lag
distances less than 10 km; it deviates from the exponential
shape at larger lags, possibly due to large-scale data mixing,
i.e., on average, data pairs separated by 10 km or greater do
not belong to the same facies type. Both the vertical
(azimuth = 180�) and the minor (azimuth = 178.96�)
variograms were also computed for sample 8 (Figure 5b).
The two variograms are nearly identical since data variabil-
ity is similar along the vertical direction and the minor axis.

It is of further interest to notice that the vertical and minor
variograms have an overall shape that is becoming similar to
the major variogram. This indicates that the Hausdorff mea-
sure obtained for the vertical/minor variograms would be-
come similar to that of the major variogram (see section 4.3).

4.3. Power Law Model/Self-Affine RF

[20] Under the assumption of a nonstationary, self-affine
RF, the power law variogram model was fit to the major,
horizontal, minor and vertical experimental variograms and
a Hausdorff measure (H) is estimated for each directional

Table 2. Geostatistical Characteristics of ln(K) Tabulated for All Samplesa

Depositional
Environment ID Lx, m Lz, m

Univariate
Characteristics s2

Major Variogram Minor Variogram

lmax/lminNugget (Co) Azimuth, deg C1 lmax C1 lmin

Shoreline 1 2600 130 normal 0.48 0.00 90.00 1.00 1000.0 0.62 10.0 100
Shoreline 4 7100 155 inconclusive

negatively skewed
0.41 0.18 89.55 1.00 2400.0 0.40 (Co = 0.2) 10.0 240

Shoreline 5 5100 130 nonnormal
negatively skewed

0.52 0.00 90.00 1.35 1700.0 0.55 10.0 170

Fluvial 2 28100 205 normal 0.11 0.34 90.00 0.38 517.0 0.30 6.7 77
Fluvial 3 30100 455 normal 0.15 0.12 89.50 0.50 450.0 0.44 13.0 35
Turbidite 6 14100 255 bimodal 1.28 0.10 89.00 1.75 8000.0 0.90 (Co = 0.05) 13.3 600
Turbidite 7 12100 205 bimodal 0.77 0.18 89.00 0.20 700.0 0.85 (Co = 0) 14.0 50
Fluvial/floodplain 8 30100 655 normal 0.38 0.10 88.96 0.33 1500.0 0.20 5.0 300
Fluvial/floodplain 9 13100 305 normal 0.30 0.25 89.80 0.44 1500.0 0.47 (Co = 0.2) 10.0 150
Fluvial/floodplain 10 10100 405 normal 0.35 0.15 88.96 0.94 3500.0 0.85 (Co = 0) 7.0 500
Fluvial/floodplain
with faults

11 17100 455 pass normality test 0.60 0.10 88.54 0.50 883.3 0.61 (Co = 0) 20.0 44

Deepwater 12 10100 355 nonnormal
positively skewed

0.11 0.40 90.00 0.55 120.0 0.55 6.0 20

Deepwater 13 10100 405 inconclusive
positively skewed

0.07 0.40 90.00 0.38 130.0 0.38 6.5 20

aSample size (Lx, Lz), associated depositional environment, univariate characteristics, sample variance (s2), major statistical axis in azimuth angle,
integral scales (lmax and lmin) estimated along the major/minor axis, and statistical anisotropy ratio (lmax/lmin). The major axis is determined from
variogram map (not shown); the minor axis is orthogonal to the major axis. Both the nugget (Co) and the sill (Co + C1) are relative to the sample variance.
Note that only Co for the major variogram is listed; Co for the minor variogram is equal to Co of the major variogram unless indicated in parentheses.

Figure 5. (a) Experimental relative variograms of sample 8 computed along the horizontal and the
major axes and (b) along the vertical and the minor axes.
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variogram by least squares fit. To be consistent with the
exponential model fitting which assumes a nugget effect if
there is discontinuity of the variogram structure at the
origin, the power law variogram was fit to the first nonzero
lag, thus also assuming nugget effect if discontinuity exists

at the origin. To compare the difference between the
Hausdorff measure estimated along the different axes, we
constructed 4 scatterplots: Hminor versus Hmajor (Figure 6a),
Hz versus Hx (Figure 6b), Hx versus Hmajor (Figure 6c), and
Hz versus Hminor (Figure 6d). Note that for nonstratified

Figure 6. Scatterplots of the Hausdorff measure estimated for each sample along the (a) major (HMajor)
and minor (HMinor) statistical axes, (b) horizontal (Hx) and vertical (Hz) coordinate axes, (c) major and
horizontal axes, and (d) minor and vertical axes. In Figures 6a and 6b, samples of similar depositional
environment are coded with similar shades of gray. The Hausdorff measure of ln(K) in other sedimentary
deposits are tabulated along with the references.
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deposits (samples 2, 12, and 13), the statistical major/
minor axes generally coincide with the x/z axes; for the
stratified deposits, the statistical axes can differ from the
coordinate axes by a small angle (samples 6, 7, 8, 10,
and 11) or can be nearly colinear with the coordinate
axes (samples 3, 9, 1, 4, and 5). Interesting insights are
gained from such comparisons and are summarized in the
following paragraphs.
[21] For all samples, the range of H is [0.01, 0.45] along

the major axis, [0.04, 0.45] along the horizontal axis, [0.02,
0.29] along the minor axis, and [0.02, 0.29] along the
vertical axis. The magnitude of the H is less than 0.5 in
all directions, indicating ln(K) antipersistence, thus the
increment of ln(K) is negatively correlated. These ranges
are consistent with the values of H reported from field
studies on different geophysical or petrophysical properties
of sedimentary rocks which are generally less than 0.5
[Painter, 2003]. Note that a Hausdorff measure of 0.25 is
a value reported by Federico and Neuman [1997] and
Painter [2003] as typical for sedimentary rocks. Using
equation (5), the spectral slope of the selected samples
has a range of [1.02, 1.9], falling within the upper range
of the 1/f noise (0, 2) [Mandelbrot, 1983]. Moreover, H of
the deepwater deposits is less than 0.1 in all directions,
smallest among all samples. As H increases, the deposi-
tional environment changes from deepwater (H < 0.1), to
fluvial (0.1 < H < 0.2), to fluvial/floodplain and turbidite
(0.2 < H < 0.3), while the largest H is generally found in the
shoreline deposits. The sedimentary structure in these
deposits also changes from little or no structure to the more
stratified configurations with a cutoff Hausdorff measure
identified at 0.15. Note that compared to the same fluvial
deposit of sample 2, the weakly stratified, fault-intersected
sample 3 has higher H in both directions and fall outside
the cutoff circle (the dashed curve with radius of 0.15). The
turbidite deposit of sample 7 has a Hmajor that is very small
compared to Hminor. Visual inspection reveals that most of
this sample is composed of thick sandy beds within which
ln(K) is nearly uniform. Thus, along the bedding plane, data
pairs are becoming similar and the within-unit variability
dominates the overall variance. Along the minor axis,
between-unit data variability corresponding to the transition
between sand and clay dominates, thus ensuring a Hminor

that is greater than 0.15. The overall position of sample 7
still falls outside the cutoff circle. However, why would the
stratified deposits have higher Hausdorff measure than the
nonstratified deposits along one or both directions? This
may be explained by their variance distribution since the
magnitude of H indicates how the total ln(K) variance is
distributed over the wave number space. For a given
deposit, the larger the H, the greater the spectral slope, the
faster the spectral density decays over the wave number
space and consequently the variance of the process is
distributed more over the relatively small wave numbers.
This indicates that long-range fluctuations are the dominant
variability, consistent with the stratified deposits analyzed
which have H greater than 0.15. On the other hand, the
deepwater and fluvial deposits (samples 12, 13, and 2) have
a spectral density distributed more over the larger wave
number, thus short-range fluctuations contribute more to the
global variance. Indeed, these deposits are characterized by
local variability and lack of significant stratification. How-

ever, comparison between Hminor and Hz reveals that a
cutoff Hausdorff measure can no longer be distinguished
between nonstratified and stratified deposits, although the
deepwater deposits still cluster near the lowest Hausdorff
measure (Figure 6d).
[22] A 45� line was drawn through all scatterplots to

investigate the sensitivity of the Hausdorff measure with
direction. We first look at the Hausdorff measure along and
perpendicular to the bedding plane (Figure 6a). For the
nearly homogenous deposits (samples 12, 13, 2, and 3),
Hminor is close to Hmajor, consistent with the findings of
Tubman and Crane [1995]. Since data variability is not
significantly different along either direction, this ‘‘isotropy’’
in Hausdorff measure is expected. For the stratified depos-
its, with the exception of sample 7, some of the points fall
near the 45� line (samples 8, 9, and 11) while others fall
beneath the 45� line (samples 1, 4, 5, 6, and 10). Note that
samples 1, 4, 5, 6, 10 are characterized with a smaller lateral
problem size compared to the dominant size of heterogene-
ity, i.e., average length of sand/clay unit. For these deposits,
Hminor < Hmajor, indicating ‘‘noisier’’ behavior along-strike
than along dip. The samples whereby the problem size is
generally large compared to the dominant size of heteroge-
neity (samples 8, 9, and 11), the vertical variability becomes
similar to the lateral variability. This points to the intriguing
possibility that for stratified deposits, the directional sensi-
tivity of the Hausdorff measure is problem-scale-dependent.
For example, both sample 8 and sample 10 were created in
the fluvial/floodplain environment, and when the problem
size grows large compared to the size of the dominant
heterogeneity (sample 10 => sample 8), the along-strike
Hausdorff measure (Hminor) approaches the along-dip
Hausdorff measure (Hmajor). In a corresponding variogram
analysis, the ‘‘zonal anisotropy’’ would approach the
‘‘geometrical anisotropy’’, e.g., the variograms constructed
for sample 8 along and perpendicular to bedding are
becoming similar (Figure 5).
[23] Along the horizontal and vertical axes, the nearly

homogenous deposits (samples 12, 13, 2, and 3) again fall
near the 45� line while the positions of the samples 6, 7, 8,
10, 11 have changed compared to Figure 6a (Figure 6b).
Note that sample 8 has moved away from the 45� line while
sample 10 has moved close to it. The turbidite samples also
moved close to the 45� line. These changes are a result of
the difference between Hmajor and Hx (Figure 6c). This
scatterplot shows that most of the samples fall along the 45�
line. These are either nonstratified deposits (samples 2, 12,
13) or stratified deposits with a bedding plane either
colinear or nearly colinear with the horizontal plane (sam-
ples 3, 9, 1, 4, and 5). Thus it is no surprise that their
Hausdorff measure along the horizontal direction is similar
to that along the major axis. The ones that deviate from the
45� line are samples 6, 7, 8, 10, and 11. These deposits are
the stratified deposits with inclined bedding, thus the major
axis is not colinear with the horizontal plane and the
corresponding correlation characteristics would be different.
For example, the horizontal variogram of sample 8 is
characterized with multiple nested structures from mixing
of data pairs of different facies types at all lag separations
(Figure 5a). With the exception of sample 7, samples 6, 8,
10, 11 have Hmajor > Hx. This may be explained by the fact
that data variability along the bedding plane is dominated
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by the long-range fluctuation of the sand or clay units.
Along the horizontal direction, data are much ‘‘noisier’’,
reflecting the fact that data pairs come from mixed facies
types at relatively short lag spacings. Indeed, in Figure 5a, if
we fit an exponential model to both variograms, the integral
scale of the major variogram is longer than that of the
horizontal variogram. Finally, since the data pairs along the
vertical direction experience similar variability as data pairs
along the minor axis, Hminor and Hz fall along the 45� line
for all samples (Figure 6d).
[24] In summary, a Hausdorff measure of 0.15 (a spectral

slope of 1.3) may identify a cutoff between nonstratified and
stratified deposits. However, such cutoff may not be appar-
ent if only vertical data is available. For nonstratified, nearly
homogenous deposit, the Hausdorff measure is also direc-
tion-independent. For stratified deposit, if the lateral prob-
lem size is small compared to the extent of the bedding
layers (common cause of ‘‘zonal anisotropy’’), Hminor tends
to be smaller than Hmajor, indicating ‘‘noisier’’ behavior
along strike. However, when the problem size grows
large in the lateral direction, the along-dip and along-strike
Hausdorff measure can reach similar values. The results also
indicate that for nonstratified deposits and horizontally
stratified deposits, the Hausdorff measure obtained from
horizontal and vertical data will be representative of the
Hausdorff measure along dip and strike, respectively. For
stratified and inclined deposits, the horizontal Hausdorff
measure will not be representative of the along-dip Hausdorff
measure, but the vertical Hausdorff measure can still be
representative of the along-strike Hausdorff measure.

5. Discussion

5.1. Stationary RF

[25] Analysis of a synthetic ln(K) map based on an
experimental stratigraphy offers insights into the spatial
structure of sedimentary deposit. For selected regions of
the map, experimental ln(K) variograms were first con-
structed along the major/minor statistical axes. The fitting
of an exponential model onto the variograms is a model
choice; a common practice in subsurface hydrology.Whether
it is a good choice depends on whether the experimental
variogram has a well-defined correlation structure, i.e.,
whether variogram levels off at a constant sill. Though
the exponential model seems adequate for some stratified
deposits (e.g., major variograms of the fluvial/floodplain
deposits), other variograms increase systematically as the
lag distance increases. For example, the minor variograms
of the fluvial/floodplain deposits contain multiple structures
with increasing variability levels (Figure 4; sample 9 and 10).
This is due to the mixing of two facies types in the
direction perpendicular to bedding: data pairs of contrasting
ln(K) are used in constructing the minor variograms. The
first structure at shorter lags has an integral scale of just a
few Dz, which is on the same order of magnitude as the
average thickness of the sand-rich and clay-rich units. Lu
and Zhang [2002] and Ritzi [2000] have indeed found that
the correlation range of stratified deposit corresponds to the
harmonic mean of the thickness of all unit types. The
upstream, sand-rich fluvial deposits (samples 2 and 3) have
variograms that are not exponential. On the basis of
transition probabilities, Ritzi et al. [2004] noted that ‘‘a

sufficient condition for an exponential-like semivariogram
is the repeated occurrence of unit types having both a
contrast in permeability and a large length variance’’. These
fluvial samples are fairly homogenous and characterized by
a lack of distinct stratification. Because of the presence of
faults, the major variogram of sample 3 also dips periodi-
cally as data pairs separated by these distances become
more similar. The lag distances at these ‘‘dips’’ may thus
characterize average fault spacing: the shortest lag corre-
sponds to the average distance between two adjacent faults;
larger lags to nonadjacent faults. In addition, the fluvial/
floodplain deposit created in the upstream region of the
basin (sample 11) is also faulted. The correlation structure
for this sample is more complex: The ln(K) variogram map
is a crisscrossing surface with two sets of correlation
ellipses intersecting one another (Figure 7). One correlation
structure set is parallel to the average bedding plane while
the second set reflects fault orientation. The profile of the
variogram map along the direction of the bedding plane is
exponential, e.g., a correlation range may be determined by
the average fault block width. The profile along faults has
not reached a sill since most of the faults are truncated by
the sample (lfault > Lz). Overall, multilevel correlation
structure occurs due to statistical mixing at a given problem
scale. This includes (1) minor variograms of stratified
deposits where data pairs come from both sandy and clayey
facies, (2) horizontal variograms of stratified deposits when
the bedding plane is subhorizontal, and (3) nonstratified
deposits intersected by high-conductivity faults.
[26] Correlation structure of a variogram is dependent on

sample size compared to the size of the local heterogeneity.
Compared to sample 9 and 10, the multilevel correlation
structure becomes much more subdued in the minor vario-
gram of sample 8 which has an overall linear shape for all
lag distances. As the problem size grows to incorporate
more data of similar statistics, the correlation structure may
evolve, e.g., if sample 8 is increased to encompass the entire
depositional environment, a larger-scale correlation struc-
ture may emerge as its minor variogram levels off at a
higher sill, since the ln(K) variance within the fluvial/
floodplain environment is finite (Figure 3c). This larger-
scale variogram may thus describe the correlation not of an
average sand/clay unit, but of the depositional environment
which contains it. To test this hypothesis, a larger-scale
exponential model is also fit to the minor variogram of
sample 8, 9 and 10 (see the dashed line in Figure 4). An
effective hydraulic conductivity (K*) is computed for each
sample using a numerical flow approach [Durlofsky, 1991]
and its principal components (K*max, K*min) estimated with
an analytical model [Gelhar and Axness, 1983]. The ana-
lytical model utilizes the ln(K) variance and the statistical
anisotropy ratio while assuming that (1) ln(K) is normally
distributed; (2) its variogram structure is exponential. For
each sample, the numerical flow approach computes an
exact K*. When the larger-scale model is fit to the minor
variograms, the analytical components of K* improve in
accuracy, especially for K*min (Table 3). This exercise strongly
suggests that the depositional environment in this case
constitutes a higher sedimentary hierarchy for which a global
variogram (possibly stationary) exists with larger-scale range
and sill. Therefore the concept of statistical mixing observed
at one problem scale is relative. On the other hand, can we

W11416 ZHANG ET AL.: GEOSTATISTICAL ANALYSIS OF EXPERIMENTAL STRATIGRAPHY

13 of 20

W11416



expect to find a stationary variogram at a smaller scale? The
answer is likely yes. The clue lies with the minor variograms
of the turbidite deposits (samples 6 and 7) which display
exponential structure with some ‘‘hole’’ effect. The stratified
patterns of the turbidite deposits are similar to those of the
fluvial/floodplain deposits, except only a few units are
included. This indicates that if the fluvial/floodplain samples
decrease in size, an exponential or ‘‘hole’’ effect behavior
may arise, corresponding to the first level off in the multilevel
variograms. Such behavior is not as obvious in the major
variograms due to longer correlation length along the major

axis compared to the lateral sample size (lmax � Lx).
However, some indication of the existence of a secondary
structure may be seen in sample 8 as its major variogram
rises above the exponential model at lag distance greater than
10 km. Although the search bandwidth for the major vario-
grams limits data mixing across units, data pairs separated by
a distance of 10 km and longer may constitute a larger-scale
variability. In comparison, the smaller samples 9 and 10 have
exponential-type major variograms. Therefore, depending
on the average unit length/thickness relative to problem size
Lx/Lz, the correlation structure may be exponential, ‘‘hole’’

Figure 7. (a) The conductivity map of sample 11 (also shown in Figure 3a). (b) Plane view of the
variogram map computed by GSLIB varmap [Deutsch and Journel, 1992]. (c) A surface view of Figure
7b. Note that the center of near zero variogram corresponds to zero lag distance.
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effect, multilevel, or linear, until a larger-scale structure may
appear.
[27] In a sedimentary deposit, the nonstationary correla-

tion structure may be transitional between a stationary
variogram representing a lower sedimentary hierarchy and
one representing a higher hierarchy. Thus, upon careful
selection of appropriate sample size, stationary variograms
may occur in separate and discrete scales corresponding to
distinct hierarchies. The stationarity assumption may be true
only in a local sense and the conductivity spatial structure is
continuously evolving as the problem scale changes. To
illustrate this, we present a hypothetical sedimentary basin
with five scales of heterogeneity (adapted from Ahmadi and
Quintard [1996]): cross strata, cross-strata coset, facies,
facies assemblage, and geologic formation (Figure 8). At a
particular hierarchy, ln(K) variogram may exhibit different
correlation structure depending on the size of the local
geological structure compared to problem size. The vario-
gram shape alone thus may not be indicative of the type of
the underlying deposit. Instead, parameters such as the
range, the sill and the knowledge of the size, shape and
variability of the local sedimentary structure are needed.
Within a hierarchical system, if models are fit onto the local
variograms, the correlation range estimated would become
dependent on the problem size and its interpretation depend
on the largest geological feature the problem contains
[Gelhar, 1993]. For example, it may range from less than
a meter to meter-scale representing the correlation of depos-
its at the scale of the cross strata, to tens or hundreds of
meters representing the correlation of deposits at facies to
facies assemblage scale, to greater than km for an entire
geological formation. Porosity well logs measured in a
fluvial deposit [Barrash and Clemo, 2002] provide further
evidence to support this view. In this study, vertical porosity
variograms were computed for different sedimentary hierar-
chies and are characterized by stationary variograms of
increasing range and sill as the sample domain incorporates
ever larger scales of the deposits. Therefore, to establish a
study area where it is ideal to have stationary correlation
structure (common assumption for stochastic flow and
transport models), a problem size has to be carefully chosen
for a given geological medium. If ln(K) is locally character-
ized by normality and stationary correlation structure, sto-
chastic-analytical model prediction on the effective
hydraulic conductivity will become more accurate. On the
other hand, variogram model fitting onto experimental vario-

grams should consider the possible emergence of larger-
scale correlation structures. If a parameter set shows no
visible trends, it is questionable to detrend a variogram with
apparent nonstationary features. To help identify an appro-
priate problem size, information based on the regional facies
map or geological insights on the extent of deposition can be
helpful. In a cross-sectional study, information about the
bedding angle would also be useful to help identify the
statistical axis of correlation. In this study, a large-scale
stationarity may be assumed for the depositional environ-
ment, and a smaller stationarity may be assumed at the facies
scale. In a basin scale problem, zonation based on facies
types may be extended to a higher hierarchy depending on
the depositional environment type (basis for the geological
framework models).
[28] In light of the above discussions, the two-level

experimental variograms observed at the Cape Cod site
could be explained by two disparate scales of local statio-
narity: the small problem size (20 m � 7 m) from the
flowmeter measurements may represent a lower sedimentary
hierarchy while the larger problem size (5 km � 50 m)
from the slug test measurements may represent a higher
variability (Figure 9). The sill of the flowmeter variogram
is approaching the nugget of the slug test variogram,
consistent with known causes of ‘‘nugget effect’’, that is,
besides measurement errors, the small-scale variability not
captured by the sampling grid can contribute to a nugget
effect in the larger-scale variogram. Under the hierarchical
assumption of local stationarity, two exponential models
are fit: one onto the small-scale flowmeter data variogram
and one onto the large-scale slug test data variogram. Each
model gives a correlation range that is representative of the
spatial continuity specific to a hierarchy. A geological
interpretation for the increasing correlation range may thus
be offered. For the small problem size, the correlation
range may represent the average length of high-conduc-
tivity lenses. For the large problem size, it may represent
the average length of geological facies which contain these
lenses.

5.2. Stochastic Fractal

[29] Self-affine stochastic fractal is a useful empirical tool
in modeling a variety of geological phenomena, e.g., down-
hole geophysical parameters of crystalline basement rocks
were found to be fractal scaling with a spectral slope within
the range of [0.5, 1.5] [Leonardi and Kumpel, 1998]. The

Table 3. Effective Hydraulic Conductivity Tensor K* of the Fluvial/Floodplain Deposits (Samples 8, 9, and 10) Computed With a

Numerical Flow Approacha

Sample sf
2 lmax

Numerical Flow (PBC), m/yr

Small-Scale Minor Model Large-Scale Minor Model

lmin lmax/lmin

Gelhar and
Axness
[1983] Error, %

lmin lmax/lmin

Gelhar and
Axness
[1983] Error, %

K* Kmax* Kmin* Kmax* Kmin* Kmax* Kmin* Kmax* Kmin* Kmax* Kmin*

8 0.38 1500 130.81 0.25 130.81 93.04 5 300 136.4 67.5 4.1 �37.9 500 3 127.4 98.1 �2.7 5.1
0.24 93.04

9 0.30 1500 114.10 0.08 114.10 90.58 10 150 117.9 56.5 3.2 �60.4 500 3 111.8 86.4 �2.1 �4.9
0.07 90.58

10 0.35 3500 19.46 0.05 19.46 15.10 7 500 20.1 10.1 3.4 �49.6 650 5.4 19.3 12.8 �0.6 �17.5
0.05 15.10

aThe principal components of K* (m/yr) estimated with a stochastic-analytical model are also listed assuming a stationary ln(K) variogram.
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log permeability of clastic coarse-grained reservoir rocks
from north central North Sea Brae oil well cores has a
spectral slope within the range of [0.6, 1.4] [Leary and Al-
Kindy, 2002]. Analysis of vertical porosity well log from a
deep submarine sandstone formation yielded a spectral
slope of 0.71 [Hewett, 1986], while vertical density log
from a carbonate reservoir yielded a spectral slope of 0.78
[Tubman and Crane, 1995]. Porosity logs from 15 wells
drilled in a deltaic environment in the Gulf of Mexico give a
spectral slope of 1.4 with a standard deviation of 0.2
[Pelletier and Turcotte, 1996]. However, within the same
basin, vertical geophysical well logs of a multifacies sand/
shale deposit from a fluvial/deltaic system give a spectral
slope ranging from 1.4 to 2.1 [Deshpande et al., 1997],
higher than the other data and falling outside the range of 1/f
noise.
[30] In this study, to directly compare the range of the

spectral slope obtained from the vertical variogram analysis
of the selected samples with those obtained from natural
deposits, a conceptual normalized spectral density is pre-
sented, superimposed with the ranges of spectral slope

found for both natural deposits and the experimental deposit
(Figure 10). We also computed the power spectrum for 11
vertical synthetic boreholes evenly spaced across our ln(K)
map; a spectral slope for each borehole is obtained by direct
power law model fitting with equation (4). All boreholes
transect the entire thickness of the basin, crossing multiple
depositional environments. The spectral slope of the syn-
thetic boreholes has a range of 1.38 to 2.25, closely
matching that found for the sand/shale system [Deshpande
et al., 1997]. Moreover, from Figure 10, we notice that the
range of the spectral slope (b) seems to increase from the
possibly single-‘‘facies’’ data of Hewett [1986] and Tubman
and Crane [1995] to our vertical synthetic well bores and
the data from the sand/shale system [Deshpande et al.,
1997] which are characterized with multiple facies and/or
depositional environments. The spectral slope obtained
from the vertical variograms of the 13 samples (each
representing deposit of a single depositional environment
containing 1 or 2 facies types) falls in between these two
groups. Thus it appears that the magnitude of the vertical
spectral slope may depend on the number of facies that are

Figure 8. A schematic diagram showing the variogram structure as the scale of the problem increases in
a hypothetical basin with five scales of sedimentary hierarchy. The sample domain is indicated with the
black outline. The thick gray circle indicates a subscale. The experimental (minor) variograms are
normalized by the sample variance. Here l is the correlation scale.
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incorporated for a given problem. If only one facies is
incorporated, the magnitude of the spectral slope will be
low, reflecting the dominance of short-range variability
within the facies; if two or more facies is incorporated for

a given problem, the spectral slope may become higher,
reflecting the gradual dominance of the long-range variabil-
ity among multiple facies. That is, if different facies units
are repeating in the vertical direction, the large-scale be-

Figure 9. Cape Cod experimental variograms (dots) reinterpreted. An exponential model (curve) is fit
onto each hierarchical variogram. Here s2 is the sill of the small sample from the flowmeter
measurements; so

2 is the nugget of the large sample from the slug test measurements.

Figure 10. Schematic diagram of a normalized spectral density for fGn and fBm of a 1-D stochastic
fractal f(x). Both axes are in log unit. Sff* (k) is the normalized spectral density: S(k)/S(kmin). For a
stochastic fractal, S(k) = jF(k)j2 � k�b (�1 < b < 1: fGn; 1 < b < 3: fBm), F(k) is the Fourier transform of
f(x) in the wave number space. Note that fBm increment is fGn for which the spectral slope is usually
related to a Hurst coefficient (b = 2Hu � 1; 0 < Hu < 1); for fBm, the spectral slope is usually related to a
Hausdorff measure (b = 2Ha + 1; 0 < Ha < 1) [Turcotte, 1997]. Note that b = 0 is the white noise (flat
spectrum when f(x) = d(x), d(x) is the Dirac delta-function); b = 2 is the classical Brownian motion (CBm)
for which the increment process is white noise. Note also that when �1 < b < 0, f(x) is a negatively
correlated fGn; when 0 < b < 1, f(x) is positively correlated fGn; when 1 < b < 2, f(x) is fBm whose
increment is the negatively correlated fGn (antipersistence); when 2 < b < 3, f(x) is fBm whose increment
is the positively correlated fGn (persistence). Thus, if the series is modeled as a fBm, its increment series
is fGn with binc = b � 2.
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tween-facies variability will dominate over the small-scale
within-facies variability. A similar observation is noted for a
synthetic and stratified deposits by Ritzi et al. [2004], who
found that the transition probability of different facies units
is responsible for most of the ln(K) variance or variogram
shape. Thus, depending on the problem size and whether
multiple facies are incorporated for the problem, permeabil-
ity, porosity or other geophysical properties have indeed
been modeled sometimes as fGn, sometimes as fBm, e.g.,
data collected from a single facies have lower spectral slope,
thus fGn is considered appropriate. This is also the source of
considerable confusion in the literature as sometimes a
Hurst coefficient is estimated (if fGn is assumed as the
appropriate model), and sometimes a Hausdorff measure is
estimated (if fBm is assumed as the appropriate model)
[Painter, 2003]. In this study, we followed the terminology
presented by Turcotte [1997] and used the spectral slope to
distinguish between the different stochastic series. In addi-
tion, the along-dip Hausdorff measure estimated for differ-
ent deposits increases from the relatively homogenous
deepwater and fluvial deposits to the stratified deposits
formed by fluvial/floodplain and deltaic processes, due to
the fact that the laterally extensive and stratified deposits
have more spectral energy distributed over the lower wave
number space (long-range variability), vice versa. Therefore
the fractal ‘‘signature’’ of the sedimentary deposits is not
only problem scale-dependent, but also depositional pro-
cesses-dependent. Finally, although the stationary assump-
tion of a RF seems at odds with the self-affine assumption,
in a hierarchical system, the overall pattern in variogram
structure may emerge in a scale-invariant fashion: different
variogram structures (be it stationary or nonstationary)
reoccur as the sample domain incorporates ever larger
scales of the sedimentary hierarchy (Figure 8). This
mirrors the statistical self-affinity predicted by the power
law model.

6. Conclusions

[31] The synthetic ln(K) map based on the experimental
stratigraphy provides us with a rich data set to explore
various long-standing problems associated with heteroge-
neous deposits. For example, the scale dependency of the
univariate and bivariate statistics, the directional sensitivity
of the Hausdorff measure, the applicability of the analytic-
stochastic theories to infer the effective properties, the
relationship between the ‘‘scale effects’’ of the effective
properties and the underlying sedimentary heterogeneity,
and solute transport in nonstationary media. Besides assign-
ing to each pixel a conductivity value and an associated
REV size, the conductivity map does not involve other
assumptions often associated with synthetic data sets. For
example, a stratigraphic model by Scheibe and Freyberg
[1995] was created by assuming uniform within-unit per-
meability and large-scale continuity of sedimentary struc-
tures. In our map, there is no abrupt cutoff at any scale of
the deposit beneath which heterogeneity no longer exists.
Within many stratified deposits, there also exists long-range
correlation exhibited as continuous sedimentary layers or
faults that can transect much of the length scale of a
depositional environment. The requirement of the classic
stochastic theories that a problem size has to be many times

the correlation range is not satisfied in many parts of our
basin.
[32] In this work, we present the results of a geostatistical

analysis which represent the initial effort of our overall goal
of understanding the above issues. We found that in a
hierarchical sedimentary system, the shape of the experi-
mental variogram depends on the sample domain size in
relation to the size of the local-scale heterogeneity. Station-
ary correlation structure may occur at separate and distinct
scales each corresponding to a particular hierarchy; the
fitted correlation range thus becomes dependent on the
problem size. For a given problem, multilevel correlation
structure can occur due to statistical mixing, i.e., data pairs
come from different facies types. The two-level variograms
of the Cape Cod site may be explained by two disparate
scales of local stationarity. On the other hand, assuming
ln(K) is a stochastic fractal, the Hausdorff measure obtained
has a comparable range to natural geological deposits. It
tends to increase from nonstratified to stratified deposits
with a cutoff value at 0.15, and, it also increases as the
number of facies incorporated in a problem increases. This
implies that fractal characteristic of sedimentary rocks is
both process-dependent and problem-scale-dependent.
[33] Future analysis can include the evaluation of the link

between indicator statistics and variograms based on the
continuous variable. By assuming conductivity cutoffs,
indicator variograms and transition probabilities can be
computed. Along with the local within-facies property
distribution, a hierarchical variogram analysis may be con-
ducted [Ritzi et al., 2004]. In such an analysis, data
sampling will come from several depositional environ-
ments, incorporating more than two facies. Effective hydro-
logical properties can be evaluated for the heterogeneous
deposits. The link between the statistical measures of
ln(K) (mean, variance, variogram correlation, Hausdorff
measure), the ‘‘scale effect’’ in the effective hydraulic
conductivity and macrodispersivity, and the existence of a
regional-scale REV for each depositional environment can
be explored. Different geological framework models can be
constructed and flow and transport modeling in both the
fully heterogeneous model and the framework models can
be conducted. The impact of effective parameterization on a
variety of geological processes can be assessed, e.g., salt
water intrusion, ore formation, past climate reconstruction,
reactive transport, oil/gas migration, waste isolation via
deep well injection, and more. In addition, different geo-
statistical interpolation and simulation methods can be
evaluated given a subset of the data. The effect of the
change of support is also of interest since statistics often
change as the data support changes. Finally, for both the
prototype experiment of 1996 and the larger-scale 1999
experiment, three-dimensional stratigraphies have been
created based on digital reconstructions of the two-
dimensional dissections. To analyze the correlation struc-
ture in three dimensions, multiple point statistics may be
needed to better describe the conductivity variation in
deposits where curvilinear features dominate. Groundwa-
ter flow, heat transfer and solute transport in the fully
heterogeneous three-dimensional systems will be of sig-
nificant interest.
[34] In using the experimental stratigraphy to study the

heterogeneity-related issues, we must emphasize that the

18 of 20

W11416 ZHANG ET AL.: GEOSTATISTICAL ANALYSIS OF EXPERIMENTAL STRATIGRAPHY W11416



experimental deposit should not be viewed as an exact
analog for natural sedimentary rocks. The experimental
deposit must be viewed as nothing more or less than a set
of strata, fully accessible in three dimensions, produced
under controlled conditions by processes that represent a
subset of those active in natural systems. These include
important forms of self-organization and spontaneous pat-
tern formation that are common in nature yet difficult to
capture in simulation models. However, due to the intrinsic
constraints of the experiment (e.g., using coal to represent
clay; geometry of the experimental setting produces a more
exaggerated topographic slope, lack of representation of
biogenic processes and Coriolis effect), and the assumptions
employed to create the synthetic ln(K) map, caution must be
exerted in any effort to directly compare our results with
those found in natural sedimentary systems the experiment
attempts to emulate. It is important to point out that in a
natural fluvial/deltaic system, stratification can occur at
more scales, e.g., cross strata can result from bed load
versus suspended load transport, layers of point bar deposits
can result from lateral migration of channels, periodic
flooding can result in alternations of channel (sandy) and
floodplain (clayey) facies, and sea level variation or tectonic
subsidence can result in change in depositional environment
from fluvial sand/clay system to marine deepwater clay,
thus creating the largest scale stratification. In the prototype
experiment from which our data came, the finer scales of
stratifications (cross strata or point bar deposits) were not
created due to the lack of truly channellized flows. How-
ever, future experiments are continuously being designed to
create more realistic fluvial processes and accordingly, finer
scales of stratifications. For example, in the 1999 experi-
ment, more channellized systems were developed within a
larger accommodation space from which we can observe the
formation of point bars. Since multiscale stratification is
most likely responsible for the fractal signature of the
various geophysical properties of sedimentary rocks,
any ‘‘physical theory’’ developed should explain the strat-
ification observed at all scales as a result of a variety of
sediment transport mechanisms. Over time, we hope
that the experiments will help us obtain better understanding
of the underlying physical processes as well as better
characterization of the multiscale, hierarchical sedimentary
heterogeneity.
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