768 research outputs found

    Integrable models of galactic discs with double nuclei

    Full text link
    We introduce a new class of 2-D mass models, whose potentials are of St\"ackel form in elliptic coordinates. Our model galaxies have two separate strong cusps that form double nuclei. The potential and surface density distributions are locally axisymmetric near the nuclei and become {\it highly} non-axisymmetric outside the nucleus. The surface density diverges toward the cuspy nuclei with the law Σr2\Sigma \propto r^{-2}. Our model is sustained by four general types of regular orbits: {\it butterfly}, {\it nucleuphilic banana}, {\it horseshoe} and {\it aligned loop} orbits. Horseshoes and nucleuphilic bananas support the existence of cuspy regions. Butterflies and aligned loops control the non-axisymmetric shape of outer regions. Without any need for central black holes, our distributed mass models resemble the nuclei of M31 and NGC4486B. It is also shown that the self-gravity of the stellar disc can prevent the double nucleus to collapse.Comment: 8 pages, accepted for publication in MNRA

    Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins

    Get PDF
    Maintenance of pluripotency is regulated by a network of transcription factors coordinated by Oct4, Sox2, and Nanog (OSN), yet a systematic investigation of the composition and dynamics of the OSN protein network specifically on chromatin is still missing. Here we have developed a method combining ChIP with selective isolation of chromatin-associated proteins (SICAP) followed by mass spectrometry to identify chromatin-bound partners of a protein of interest. ChIP-SICAP in mouse embryonic stem cells (ESCs) identified over 400 proteins associating with OSN, including several whose interaction depends on the pluripotent state. Trim24, a previously unrecognized protein in the network, converges with OSN on multiple enhancers and suppresses the expression of developmental genes while activating cell cycle genes. Consistently, Trim24 significantly improved efficiency of cellular reprogramming, demonstrating its direct functionality in establishing pluripotency. Collectively, ChIP-SICAP provides a powerful tool to decode chromatin protein composition, further enhanced by its integrative capacity to perform ChIP-seq

    Elastic Correlations in Nucleosomal DNA Structure

    Full text link
    The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T.J. Richmond and C.A. Davey, Nature {\bf 423}, 145 (2003)], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G=25 nm for the value of the twist-bend coupling constant

    Ex Vivo Evaluation of Insulin Nanoparticles Using Chitosan and Arabic Gum

    Get PDF
    Polymeric delivery systems based on nanoparticles have emerged as a promising approach for peroral insulin delivery. The aim of the present study was to investigate the release of insulin nanoparticulate systems and ex vivo studies. The nanoparticles were prepared by the ion gelation method. Particle size distribution, zeta potential, and polydispersity index of the nanoparticles were determined. It was found that the nanoparticles carried positive charges and showed a size distribution in the range of 170–200 nm. The electrostatic interactions between the positively charged group of chitosan and negatively charged groups of Arabic gum play an important role in the association efficiency of insulin in nanoparticles. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. The mucoadhesion of the nanosystem was evaluated using excised rat jejunum. Ex vivo studies have shown a significant increase in absorption of insulin in the presence of chitosan nanoparticles in comparison with free insulin

    Chromatin-contact atlas reveals disorder-mediated protein interactions and moonlighting chromatin-associated RBPs

    Get PDF
    RNA-binding proteins (RBPs) play diverse roles in regulating co-transcriptional RNA-processing and chromatin functions, but our knowledge of the repertoire of chromatin-associated RBPs (caRBPs) and their interactions with chromatin remains limited. Here, we developed SPACE (Silica Particle Assisted Chromatin Enrichment) to isolate global and regional chromatin components with high specificity and sensitivity, and SPACEmap to identify the chromatin-contact regions in proteins. Applied to mouse embryonic stem cells, SPACE identified 1459 chromatin-associated proteins, ∼48% of which are annotated as RBPs, indicating their dual roles in chromatin and RNA-binding. Additionally, SPACEmap stringently verified chromatin-binding of 403 RBPs and identified their chromatin-contact regions. Notably, SPACEmap showed that about 40% of the caRBPs bind chromatin by intrinsically disordered regions (IDRs). Studying SPACE and total proteome dynamics from mES cells grown in 2iL and serum medium indicates significant correlation (R = 0.62). One of the most dynamic caRBPs is Dazl, which we find co-localized with PRC2 at transcription start sites of genes that are distinct from Dazl mRNA binding. Dazl and other PRC2-colocalised caRBPs are rich in intrinsically disordered regions (IDRs), which could contribute to the formation and regulation of phase-separated PRC condensates. Together, our approach provides an unprecedented insight into IDR-mediated interactions and caRBPs with moonlighting functions in native chromatin

    Dental composites with strength after aging improved by using anodic nanoporous fillers: experimental results, modeling, and simulations

    Get PDF
    We fabricated resin composites based on a standard matrix system used for dental restorations incorporating a novel concept microsized filler with passing-through nanopores. The fillers were obtained from anodic porous alumina (APA), after separation from the supporting aluminum substrate and ball milling. Bending tests were carried out on as-cured and artificially aged composites, to determine the material elastic modulus and its strength for the first time. A two-scale modeling was developed; at micro scale, a finite element (FE) model of the representative volume element (RVE) including single APA and surrounding polymer was constructed. The influence of embedded APA length and APA–matrix interaction on the strength was investigated. Then, FE model of the macro-scale RVE containing numerous APA with different orientations based on stochastic modeling was constructed. The output of micro-scale model was used as the input of macro-scale model. The results of simulations allowed to understand better the behavior of the novel composite and interpret the material response deviations from those of common three-phases composites, and to validate the experimental results. The strength of the experimental composite is lower than those of commercial composites used for the same application when as-cured, but is higher after aging

    Optimal Sensorless Four Switch Direct Power Control of BLDC Motor

    Get PDF
    Brushless DC (BLDC) motors are used in a wide range of applications due to their high efficiency and high power density. In this paper, sensorless four-switch direct power control (DPC) method with the sector to sector commutations ripple minimization for BLDC motor control is proposed. The main features of the proposed DPC method are: (1) fast dynamic response (2) easy implementation (3) use of power feedback for motor control that is much easy to implement (4) eliminating the torque dips during sector-to sector commutations. For controlling the motor speed, a position sensorless method is used enhancing drive reliability. For reference speed tracking, a PI control is also designed and tuned based on imperialist competition algorithm (ICA) that reduces reference tracking error. The feasibility of the proposed control method is developed and analyzed by MATLAB/SIMULINK®. Simulation results prove high performance exhibited by the proposed DPC strategy

    Model-Free Predictive Current Control of a Voltage Source Inverter

    Get PDF
    Indexación: Scopus.Conventional model predictive control (MPC) of power converter has been widely applied to power inverters achieving high performance, fast dynamic response, and accurate transient control of power converter. However, the MPC strategy is highly reliant on the accuracy of the inverter model used for the controlled system. Consequently, a parameter or model mismatch between the plant and the controller leads to a sub-optimal performance of MPC. In this paper, a new strategy called model-free predictive control (MF-PC) is proposed to improve such problems. The presented approach is based on a recursive least squares algorithm to identify the parameters of an auto-regressive with exogenous input (ARX) model. The proposed method provides an accurate prediction of the controlled variables without requiring detailed knowledge of the physical system. This new approach and is realized by employing a novel state space identification algorithm into the predictive control structure. The performance of the proposed model-free predictive control method is compared with conventional MPC. The simulation and experimental results show that the proposed method is totally robust against parameters and model changes compared with the conventional model based solutions.https://ieeexplore.ieee.org/document/926284
    corecore