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ABSTRACT Conventional model predictive control (MPC) of power converter has been widely applied
to power inverters achieving high performance, fast dynamic response, and accurate transient control of
power converter. However, the MPC strategy is highly reliant on the accuracy of the inverter model used for
the controlled system. Consequently, a parameter or model mismatch between the plant and the controller
leads to a sub-optimal performance of MPC. In this paper, a new strategy called model-free predictive
control (MF-PC) is proposed to improve such problems. The presented approach is based on a recursive
least squares algorithm to identify the parameters of an auto-regressive with exogenous input (ARX) model.
The proposed method provides an accurate prediction of the controlled variables without requiring detailed
knowledge of the physical system. This new approach and is realized by employing a novel state space
identification algorithm into the predictive control structure. The performance of the proposed model-free
predictive control method is compared with conventional MPC. The simulation and experimental results
show that the proposed method is totally robust against parameters and model changes compared with the
conventional model based solutions.

INDEX TERMS Model-free predictive control, MPC, robustness, voltage source converter.

I. INTRODUCTION
The high penetration of generators, loads and storage systems
to the main grid, turns power converters and control archi-
tectures as main components for a more reliable operation.
In addition to the energy transformation more challenging
control objectives are demanded according to the needs of
modern electrical systems. This is the case, for instance,
of grid-connected systems such as renewable energy, electric
drives in industrial applications, or electric transportation [1].

Conventionally, current and voltage control in inverters
is based on linear controllers such as proportional-integral
(PI), proportional-integrator-derivative (PID), and propor-
tional resonant (PR) controllers, in addition to Pulse-Width
Modulation (PWM) [2]–[5]. However, this linearized control
structure has inherent low dynamic response [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

In recent years, Finite-Control-Set Model Based Pre-
dictive Control (FCS-MPC) has gained increased attention
controlling power converters for low, medium and high
power applications [7], [8]. Advantages such as flexibil-
ity, high-speed response, straightforward constraint handling,
multi-objective control capabilities and simple implementa-
tion have made MPC an interesting control approach for
the community and even the industry [5], [6], [9]–[12].
As is well-known, to select the most appropriate control
action for the converter a prediction of the future behavior
of the system is realized based on a specific model that
represent such system. However, due to its dependence on
a mathematical model of the system, the performance of
FCS-MPC is affected by parameter changes or model uncer-
tainty, particularly in steady-state [11]. Different practical
aspects limit the precision of the prediction model, such as
unforeseen load changes, temperature variation or compo-
nent aging. To improve the robustness of FCS-MPC when
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facing model uncertainties, different approaches have been
proposed recently, creating a new class of model-free predic-
tive controllers.

Model-free predictive current control based on the anal-
ysis of current increments, assuming a linear behavior
of the current between sampling intervals is presented in
[13]–[16]. Model-free prediction methods based on past
measurements of the effects of each inverter voltage vec-
tor, which are dynamically stored in a look-up table, have
been proposed [17]. However, the update frequency of the
measurements associated with each vector is critical to the
performance and even the system stability.

In order to relax the dependency on unknown model
parameters, the concept of ultra-local model has been applied,
where predictions are made using a dynamic model that is
continuously adapted based on the input-output behavior of
the system [18], [19]. A drawback of this method is the
need of tuning several parameters in the prediction model.
An improvement was proposed in [20], using an ultra-local
model structure with an extended state observer to predict the
system behavior.

Online identification of inductance in the interior perma-
nent magnet synchronousmotor (IPMSM) using and adaptive
observer with a recursive algorithm has been proposed [21].
Other parameters can be also identified, but this require some
modifications. The identification algorithm is included in
the predictive algorithm, therefore reducing the number of
calculations. However, the method is designed for a specific
application (IPMSM), so it can not be readily applied to
systems with a different structure. Adaptation mechanisms
based on recursive least squares (RLS) estimation have been
recently proposed [22]. A limitation of this approach is that
the structure of the system is established by the application,
i.e., a synchronous motor. Therefore, adapting the method to
a different system configuration is not straightforward.

In order to improve the performance of the predictive
controller under uncertainty in the load model, an autoregres-
sive with exogenous input (ARX) structure has been used
as a disturbance estimator [23]. However, the ARX struc-
ture was used in combination with a conventional prediction
model that still demands detailed knowledge of the physical
structure of the controlled system.

From the review of existing model-free predictive control
strategies we note the need for a systematic approach to con-
struct the prediction model without previous knowledge of
the physical system. This implies not only uncertainty in the
parameter values, but also on the structure of a mathematical
model. In this paper, a novel model-free predictive control
(MF-PC) is proposed, where the RLS algorithm is employed
to identify the parameters of a generic ARXmodel. The main
contributions of this approach are:

1) A systematic procedure to design a model-free control
strategy based on parameter identification of a generic math-
ematical model using the RLS algorithm.

2) The proposed approach does not require a detailed
knowledge of the physical system, and inherently adapts the

FIGURE 1. Generic model of a voltage source inverter.

prediction model using measured data of the process. This
makes the controller exceptionally robust to load changes or
parameter mismatch.

3) By maintaining the direct control principle of
FCS-MPC, the proposed MF-PC is able to retain the very
fast dynamic response of this class of controller.

The rest of this paper is organized as follows. Section II
presents a brief introduction to conventional FCS-MPC,
and the effect of model parameter mismatch on the per-
formance of the classical MPC approaches. Details of the
proposed model-free predictive control algorithm are given
in Section III. Simulation and experimental results of the
proposed approach are demonstrated in Section IV. Finally,
Section V concludes the paper.

II. CONVENTIONAL FCS-MPC
In general, FCS-MPC algorithms take advantage of the
reduced number of switching states that can be generated
in electronic power converters, which makes possible to use
exhaustive search techniques to select the optimal state in
terms of given control requirements.

The generic power circuit of a simple three-phase,
two-level voltage-source inverter (2L-VSI) is shown in Fig. 1.
The different eight voltage switching states of the converter
are determined by the gating signals, i.e., Sa, Sb, and Sc as
shown in Fig. 2, and expressed in vectorial form by

S =
2
3
(Sa + aSb + a2Sc) (1)

where a = ejπ/3. Each switching state defines a set of phase
voltages of the inverter with respect to the negative bus-bar
N , resulting in an output voltage state vector generated by
the inverter defined by

v =
2
3
(vaN + avbN + a2vcN ) (2)

Finally, the load current dynamics can be described by the
vector equation

v = Ri+ L
d i
dt
, (3)

where R and L are the resistance and inductance of the
three-phase load in Fig. 1, respectively, and i is the load
current vector.
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FIGURE 2. Voltage vectors and switching states generated by a two-level
three-phase VSI.

FIGURE 3. Classical Model Predictive Control Scheme.

A discrete-time model of the load current (3) is employed
to predict future values of the load current at the sampling
instant k + 1, for each one of the eight available voltage
vectors v(k) generated by the 2L-VSI, shown in Fig. 2.
Without loss of generality, here we discuss the prediction
model commonly employed for current control in RL loads,
using Euler’s method for discretization and represented in the
complex αβ frame [24]:[

ipα(k + 1)
ipβ (k + 1)

]
=

(
1−

RTs
L

)[
iα(k)
iβ (k)

]
+
Ts
L

[
vα(k)
vβ (k)

]
, (4)

where the superscript p denotes the predicted variables and Ts
is the sampling period. For computing the predicted currents
in (4), instantaneous measurement of load currents iα(k),
iβ (k) and the components of the complex voltage vector
applied to the load vα(k) and vβ (k) are required. The model
parameters are the load resistance R and inductance L.
The control objectives for FCS-MPC algorithms are

expressed in a cost function, which is a measure of the degree
of accomplishment of each switching state of the inverter
regarding the desired system behavior. In the case of current
control, where the objective is to track of a current reference
with components i∗α and i∗β , the cost function is defined as:

gi = |i∗α(k+1)− i
p
α(k+1)|

2
+ |i∗β (k+1)− i

p
β (k+1)|

2 (5)

A block diagram of the conventional MPC strategy applied
to a 2L-VSI inverter described in Fig. 1 is illustrated in Fig. 3.
However, the main drawback of the conventional FCS-MPC
approach is the dependence on the model quality in the
prediction equation (4). Modeling errors can be generally

FIGURE 4. Proposed Model-Free Predictive Control Scheme.

ascribed to parametric and non-parametric uncertainty with
respect to the real physical system. Parametric uncertainty
arises from an incomplete knowledge of accurate values
of parameters in the model, whereas non-parametric uncer-
tainty is related to neglected dynamics, measurement noise
or sensor dynamics [25].

The negative effect of model uncertainty on the
performance of model predictive algorithms is well known.
Particularly, in the case of FCS-MPC it has been demon-
strated that prediction error has a complex relationship with
parametric uncertainties, depending also on the instantaneous
values of electrical parameters [11]. To overcome the afore-
mentioned problem with conventional FCS-MPC, a model-
free predictive control is proposed, and discussed in the
following section.

III. PROPOSED MODEL-FREE PREDICTIVE CONTROL
STRUCTURE
As discussed in section II, the objective of a predictive current
control strategy is to minimize the error between a reference
current and its measured values, which is implemented using
a cost function such as (5). Note that in the conventional
FCS-MPC, the current predictions are computed using a load
or filter model, therefore, any uncertainty in the model leads
to inaccurate current predictions, and consequently degrade
the performance of the controller.

The motivation behind the proposed model-free predictive
controller, illustrated in Fig. 4, is to reduce as much as possi-
ble the knowledge of the system required to perform predic-
tions and compute optimal control actions. To achieve this,
a mathematical model with a standard structure is selected,
so that minimal previous knowledge of the physical system is
needed. Then, by using an estimation algorithm, the param-
eters of the model are automatically updated using input and
output measurements.

Themain difference of the proposed controller with respect
to the conventional FCS-MPC is the approach employed to
obtain current predictions. The prediction model in Fig. 3
is built assuming that a detailed knowledge of the physical
system is available, and its performance is affected if this
premise is not fulfilled. On the other hand, the proposed
controller represented in Fig. 4 uses an estimation algorithm
to keep track of unmodeled dynamics or parameter changes
in the physical system. The cost function for the proposed
approach follows the same structure than the conventional
FCS-MPC:

gMF = |i∗α(k+1)− îα(k+1)| + |i
∗
β (k+1)− ˆiβ (k+1)|, (6)
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where, i∗α(k+1) and i
∗
β (k+1) are the real and imaginary parts

of the reference current, extrapolated to the future sampling
period k+1. On the other hand, îα(k+1) and ˆiβ (k+1) are the
real and imaginary parts of the load current vector, predicted
for the next sampling period using the estimated load model
for a given inverter voltage vector.

Note that more complex cost functions considering system
constraints are also presented in the literature [6], [26]. How-
ever, the basic cost function for current reference tracking is
applied here for comparing the performances of the proposed
method and the conventional FCS-MPC.

A. SYSTEM REPRESENTATION USING AN
AUTOREGRESSIVE STRUCTURE
In a model-free approach, the filter and load system shown
in Fig. 1 is treated as a black box, where the system model
structure and parameters first have to be determined, so that
predictions can be made. Among the several existing struc-
tures aimed to represent a dynamic system using linear
models, the ARX stands out as one of the most widely
employed. The extended use of ARX models is mainly
explained because its parameters are simple to compute using
well-established estimation algorithms such as RLS. More-
over, ARXmodels have a good performance even in the pres-
ence of small unmodeled non-linear effects, thus increasing
the robustness of the prediction [27]. Therefore, in this work
we use an ARX structure as the basis of the black-box model
for the proposed predictive controller.

A transfer function between the output and input of the
unknown system, represented using the ARX structure in the
α − β stationary reference frame, is defined as follows:

îα(k) =
Bαα(z−1)
Aα(z−1)

vα(k)+
Bαβ (z−1)
Aα(z−1)

vβ (k) (7)

ˆiβ (k) =
Bβα(z−1)
Aβ (z−1)

vα(k)+
Bββ (z−1)
Aβ (z−1)

vβ (k), (8)

where îα(k) and ˆiβ (k) are the estimated values of the load
current, whereas vα(k) and vβ (k) are the voltages generated
by the VSI and constitute the inputs to the unknown system to
be controlled. The polynomials in the ARXmodel are defined
as:

Ai(z−1) = 1+ ai1z
−1
+ ai2z

−2
+ . . .+ ainAz

−nA (9)

Bij(z−1) = bij1z
−1
+ bij2z

−2
+ . . .+ bijnBz

−nB , (10)

where superscript i of polynomials Bij(z−1) denote the axis
(α or β) of the current being modeled, and j indicates the
axis of the voltage acting as an external input. In the case
of polynomials Ai(z−1), superscript i indicates the axis of
the estimated current. The order of the polynomials in the
ARX structure is given by nA and nB. A and B are Matrix
Polynomials proportional to z, which define the systemmodel
based on the correlation between the black box output and
input vectors. Therefore, if the transfer function between
input and output (7) and (8) can be identified accurately,
the system model will be generated with no need to know
about the complete model of the system.

A design aspect that influences both the ability of the ARX
model to faithfully represent the system dynamics, and the
computational burden of the control algorithm is the poly-
nomial orders nA and nB in (9) and (10), respectively. There
is a trade-off where higher polynomial order increases the
model flexibility for capturing complex phenomena, but on
the other hand unnecessarily high orders can increase the
computational burden and complexity of algorithms based
on the ARX model [28]. Considering the system illustrated
in Fig. 1, in this paper we selected nA = 3 and nB = 2 in order
to achieve a good control performance and low computational
burden.

B. RLS PARAMETER ESTIMATION ALGORITHM
The RLS algorithm has a long history in parameter esti-
mation for control applications [29]. It is mainly employed
to obtain a reliable dynamic model of systems subject to
structure or parameter uncertainty, or time-varying charac-
teristics. Hence, in this paper we propose to use the RLS
algorithm to compute the coefficients of the ARX model
given by (7) and (8) using measurements obtained from the
controlled system.

The RLS algorithm consists of a set of equations that is
solved recursively, where the objective at each iteration is to
obtain an accurate estimation of the parameters vector at the
present time θ̂ (k):

θ̂ (k) = θ̂ (k − 1)+ G(k)e(k)

G(k) =
P(k − 1)ϕ(k)

ϕT (k)P(k − 1)ϕ(k)+ λ
(11)

P(k) =
1
λ

(
I − G(k)ϕT (k)

)
P(k − 1).

The gain matrix G(k) links the updated parameters vector at
each sampling step with estimation error e(k) given by:

e(k) = i(k)− ϕT (k)θ̂(k − 1), (12)

where i(k) is the instantaneous current measurement. The
forgetting factor 0 < λ ≤ 1 is introduced to give a higher
weighting to new measurements in the RLS algorithm [29].
Smaller values of λ lead to higher tracking velocity of
fast-changing parameters, but make the systemmore sensitive
to noise [30]. Since the sampling frequency in the implemen-
tation of the predictive controller is much higher compared
to possible parametric variations, and to increase the noise
immunity in this work we use λ = 1.

Vectors θ̂ andϕ in (11) and (12) are related to the controlled
system as follows. First, estimated current equations (7) and
(8) are rewritten as:

îα(k) = −aα1 iα(k − 1)+ · · · − aαnA iα(k − nA)

+ bαα1 vα(k − 1)+ · · · + bααnB vα(k − nB)

+ bαβ1 vβ (k − 1)+ · · · + bαβnB vβ (k − nB) (13)

îβ (k) = −a
β

1 iβ (k − 1)+ · · · + aβnA iβ (k − nA)

+ bβα1 vα(k − 1)+ · · · + bβαnB vα(k − nB)

+ bββ1 vβ (k − 1)+ · · · + bββnB vβ (k − nB). (14)
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Then, the unknown parameters to be identified in (13)
and (14) are gathered in vectors θ1 and θ2, respectively:

θ1 = [aα1 . . . a
α
nAb

αα
1 . . . bααnB b

αβ

1 . . . bαβnB ]
T (15)

θ2 = [aβ1 . . . a
β
nAb

βα

1 . . . bβαnB b
ββ

1 . . . bββnB ]
T . (16)

Similarly, the past data of input and output measurements
in (13) and (14) is gathered in vectors ϕ1 and ϕ2, which are
known as regressor vectors or explanatory variables and are
given by:

ϕ1 = [iα(k − 1), · · · , iα(k − nA),

vα(k − 1), · · · , vα(k − nB),

vβ (k − 1), · · · , vβ (k − nB)] (17)

ϕ2 =
[
iβ (k − 1), · · · , iβ (k − nA),

vα(k − 1), · · · , vα(k − nB),

vβ (k − 1), · · · , vβ (k − nB)]. (18)

Please note that the subscripts of vectors ϕ and θ̂ have been
omitted in (11) and (12). The RLS algorithm is computed
independently usingϕ1 andϕ2 to obtain the estimated param-
eters vectors θ̂1 and θ̂2, which are used to model the α and β
axis of the load current, respectively.

A block diagram of the RLS algorithm is presented
in Fig. 5. The inputs to the estimation algorithm, the instan-
taneous measured voltage and current applied to the load,
are located in the top-left part of the diagram. The algorithm
yields the estimated set of model parameters θ̂ (k), as depicted
in the bottom-right part of the figure. Therefore, the parame-
ters of the transfer functions that define the system model are
updated accurately at each sampling period.

C. STATE-SPACE REPRESENTATION AND PREDICTION
For the sake of convenience in the implementation of the
proposed controller, the ARX system model in (7) and (8) is
expressed as a state-space model in the observable canonical
form:

xα(k + 1) =


−aα1 1 0 · · · 0
−aα2 0 1 · · · 0
...

...
...

. . .
...

−aαnA 0 0 · · · 0


︸ ︷︷ ︸

Aα

xα(k)

+


bαα1 bαβ1
...

...

bααnB bαβnB
0 0


︸ ︷︷ ︸

Bα

[
vα
vβ

]

îα(k) = [ 1 0 · · · 0 ]︸ ︷︷ ︸
Cα

xα(k) (19)

FIGURE 5. Block diagram of the RLS algorithm.

xβ (k + 1) =


−aβ1 1 0 · · · 0
−aβ2 0 1 · · · 0
...

...
...

. . .
...

−aβnA 0 0 · · · 0


︸ ︷︷ ︸

Aβ

xβ (k)

+


bβα1 bββ1
...

...

bβαnB bββnB
0 0


︸ ︷︷ ︸

Bβ

[
vα
vβ

]

îβ (k) = [ 1 0 · · · 0 ]︸ ︷︷ ︸
Cβ

xβ (k) (20)

The identified state-space model of the system, can be
written as follows:{

x(k + 1) = Aα(k)x(k)+ Bα(k)v(k)
îα(k + 1) = Cα(k)x(k + 1)

(21){
x(k + 1) = Aβ (k)x(k)+ Bβ (k)v(k)
îβ (k + 1) = Cβ (k)x(k + 1)

(22)

where, v(k) = [vα(k) vβ (k)] is the input voltage vector. Vec-
tors Cα and Cβ relate the predicted currents to the internal
state x(k + 1), whereas matrices Aα , Bα , Aβ and Bβ contain
the system model parameters and are updated using the RLS
identification algorithm at each sampling time. Therefore,
based on (21) and (22), a one-step ahead prediction of the
output current is achieved.

Finally, the proposed predictive control algorithm is imple-
mented as depicted in the flow chart of Fig. 6. During
each sampling interval, the algorithm starts by applying the
optimal inverter voltage vector computed in the preceding
time step. Next, by using the instantaneous and past voltage
and current measurements, the prediction model is estimated
using the RLS method. The estimated model is updated
continuously in order to keep track of any changes in the
physical system, and is then used to predict the current at
the future sampling period k + 1 using (21) and (22). The
cost function (6) is subsequently evaluated for each available
inverter voltage and an exhaustive optimization method is
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FIGURE 6. Proposed model-free control flow-chart.

used for selecting the optimal control action to be applied
during the next sampling interval.

IV. SIMULATION AND EXPERIMENTAL RESULTS
In order to validate the performance of the proposed
model-free predictive control structure, a simulated model in
MATLAB/SimPowerSystems is compared with the conven-
tional FCS-MPC proposed in [7]. The results are presented
to highlight the effects of parameter mismatches, as well as
model mismatch, between the modeled values of the load on
the performance of the proposed MF-PC strategy compared
to the conventional FCS-MPC. Furthermore, experimental
result is provided to practically validate the performance
of the proposed approach compared to the conventional
FCS-MPC.

Fig. 7 shows the test system setup including oscilloscope,
host PC and control desk, the power inverter connected to

FIGURE 7. Experimental setup with voltage source inverter (VSI),
oscilloscope, and OPAL-RT 5700 and control desk system for control.

TABLE 1. Test system parameters.

a three-phase load and OPAL-RT OP5700, which serves as
an interface between the controller and the hardware. The
test system parameters are presented in Table 1. In order to
implement the proposed MF-PC, the number of estimated
parameters in the polynomials A(z) and B(z) are nA=3, and
nB=2, respectively. Thus, based on (7) and (8), the initial
transfer function is determined as follows:

îα(k) =
−6.51× 10−5q−1 + 5.29× 10−5q−2

1− 1.4163q−1 + 0.0056q−2 + 0.4106q−3
vα(k)

+
−1.87× 10−6q−1 − 4.87× 10−7q−2

1− 1.4163q−1 + 0.0056q−2 + 0.4106q−3
vβ (k)

(23)

îβ (k) =
+1.89× 10−6q−1 + 9.73× 10−9q−2

1− 1.4651q−1 + 0.0716q−2 + 0.3935q−3
vα(k)

+
−6.32× 10−5q−1 + 5.51× 10−5q−2

1− 1.4651q−1 + 0.0716q−2 + 0.3935q−3
vβ (k)

(24)

Therefore, based on (21) and (22), the initial state-space
model is obtained as follows:

xα(k + 1) =

 1.4163 1 0
−0.0056 0 1
−0.4106 0 0


︸ ︷︷ ︸

A

xα(k)

+

−6.51× 10−5 −1.87× 10−6

5.29× 10−5 −4.87× 10−7

0 0


︸ ︷︷ ︸

B

[
vα
vβ

]

îα(k + 1) = [1 0 0]︸ ︷︷ ︸
C

xα(k) (25)
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FIGURE 8. Results of the proposed MF-PC performance under current
transient. (a) Simulation result. (b) Experimental result.

xβ (k + 1) =

 1.4651 1 0
−0.0716 0 1
−0.3934 0 0


︸ ︷︷ ︸

A

xβ (k)

+

 1.89× 10−6 −6.32× 10−5

9.73× 10−9 5.50× 10−5

0 0


︸ ︷︷ ︸

B

[
vα
vβ

]

îβ (k + 1) = [1 0 0]︸ ︷︷ ︸
C

xβ (k) (26)

It worth noting that the system model defined by the
polynomials A(z) and B(z) are adaptively updated at each
sampling time based on the system identification algorithm.

A. SCENARIO 1: TRANSIENT PERFORMANCE OF THE
PROPOSED MF-PC
Fig. 8 shows the transient response of the proposed method.
As can be seen, by changing the reference current at
t = 45 ms, the proposed MF-PC strategy follows the ref-
erence trajectory accurately, and very fast in several mili-
seconds. This fast transient response is the main achievement
of the predictive control strategies. It is worth to note that
the transient response of the conventional linear controller
is much slower [6], [31]. Fig. 8a and Fig. 8b show the
transient performance of the proposed approach for simula-
tion and experimental results, respectively. As can be seen
by employing the proposed MF-PC, the output current of
VSI follows the reference trajectory very fast and accurate,

FIGURE 9. Compared simulation of the conventional FCS-MPC and the
proposed MF-PC of voltage source inverter considering ideal model, with
the same sampling time.

without requiring previous knowledge of the systemmodel or
parameters. Thus, the proposed control strategy performance
during transient time is also validated practically.

B. SCENARIO 2: PARAMETERS MISMATCH
In order to compare the results with the conventional
FCS-MPC, parameters mismatch is carried out for both the
conventional FCS-MPC and the proposed MF-PC. Fig. 9
shows the performance of the conventional FCS-MPC and
MF-PC with accurate load parameters in the model. As can
be seen, the output current for both control strategies is
controlled accurately. However, the error between the ref-
erence current and the VSI output current in the MF-PC is
lower. The main reason for this difference is that with the
same sampling time, the proposed MF-PC shows a higher
average switching frequency. To provide a fair baseline for the
comparison between both predictive controllers, the sampling
time of the conventional FCS-MPC is modified so that the
average switching frequencies of both methods are the same.
This case is shown in Fig. 10, where the error between the
reference current and the VSI output current is very similar
for both methods as the parameters of the prediction model
for FCS-MPC are exactly known.

In the next step, a mismatch in parameters of the controller
and the real value of the load is applied. In this case, the load
inductance is two times larger than the model parameters,
and the load resistance is two times smaller than the model
parameters. In this scenario, the model is considered to be
the same as the connected RL load with mismatch in the
model parameters. As can be seen from Fig. 11, the param-
eters mismatches in the conventional FCS-MPC degrade the
performance of the controller. Themain reason is that the con-
ventional FCS-MPC relies on the model of the system, and if
the model is not accurate, the controller cannot perform well.
However, as can be seen from Fig. 11 after t = 20 ms, when
the MF-PC is activated, the error between the reference cur-
rent and output current of VSI is lower than the conventional
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FIGURE 10. Compared simulation of the conventional FCS-MPC and the
proposed MF-PC of voltage source inverter considering ideal model, with
the same average switching frequency.

FCS-MPC, and the performance of the controller is much
superior compared to the FCS-MPC.

These results are also validated experimentally. Fig. 8b
and Fig. 11b shows the performance of the conventional
model predictive control of VSI and the proposed approach,
respectively. As can be seen from Fig. 8b and Fig. 11b,
the proposed MF-PC has lower error, and much superior
performance compared to the conventional FCS-MPC with
parameters mismatch.

C. SCENARIO 3: MODEL MISMATCH
In this scenario an RLC load is applied to serve as the model
mismatch. The predefined model of FCS-MPC is based on
the RL load, and by employing an RLC load, the model
of the system is totally different. Fig. 12 shows a compar-
ison between the conventional FCS-MPC and the proposed
MF-PC. As can be seen, by changing the model of the system,
the conventional FCS-MPC is unstable. However, the pro-
posed controller is independent to the system model, and
changing the model has no effect on the performance of the
controller.

Experimental results also validate this achievement.
Fig. 12b shows the performance of the conventional
FCS-MPC considering model mismatch. As it can be seen,
when a model mismatch is applied, the system goes to insta-
bility. The reason is that the conventional FCS-MPC needs to
have the model of the system to accurately predict the output
current of the VSI and consequently control the switching
states of the inverter. However, the proposed approach is
totally model-free, and it could adaptively define the model
of the system. Thus, as can be seen from Fig. 12c, the system
is stable even when the model is changed.

D. AVERAGE SWITCHING FREQUENCY
The average switching frequency for the conventional MPC
is around 8200 Hz and for the proposed model free predictive
control is around 9500 Hz, which is calculated as follows [6]:

faverage =

∑N
i=1 sw(i)
3N Ts

. (27)

FIGURE 11. Comparison of conventional FCS-MPC and the proposed
MF-PC of a voltage source inverter considering model parameter
mismatch. (a) Compared simulation results of both controllers.
(b) Experimental validation for conventional FCS-MPC. (c) Experimental
validation for MF-PC.

where, N is the total number of samples, and Ts is the
sampling time.

Even though the average switching frequency obtained
with MF-PC is not unusually high, there exist well-known
approaches to reduce the switching activity by means of
an additional term in the cost function that penalizes the
switching effort [6]. However, in this paper we focused on
a simple cost function structure in order to highlight the
proposed controller’s capability to operate under strong mod-
eling uncertainty and to compare its performance with the
conventional approach.
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FIGURE 12. Performance comparison of conventional FCS-MPC and the
proposed MF-PC of a voltage source inverter considering model
mismatch. (a) Simulated comparison between the conventional FCS-MPC
and the proposed MF-PC. (b) Experimental validation of the conventional
FCS-MPC. (c) Experimental validation of the proposed MF-PC.

E. COMPUTATION TIME OF THE CONTROL ALGORITHM
An important aspect that determines the feasibility of a
control algorithm is the associated computational burden.
Besides the prediction and optimization stages, which are
the basis of the MPC strategy, the proposed MF-PC algo-
rithm also includes the parameter estimation part described
in Sec. III-B. Therefore, an increase in the computation time
is unavoidable. However, as can be seen in Table 2, the com-
putation time of the proposed MF-PC shows only a slight

TABLE 2. Computation times of the predictive algorithms.

increase of 6% with respect to the conventional FCS-MPC
algorithm. These times were measured in experimental tests
with a sampling period of 10 µs, where no overrun events
were recorded during the trials.

V. CONCLUSION
This paper has presented a new strategy for predictive current
control in a two-level voltage-source inverter without using
the physical model and the parameters of the system under
control. For this reason, the strategy is named ‘‘model-free
predictive control’’. The strategy presented in this paper is
based on an estimation of the controlled variables using the
Recursive Least Squares (RLS) method which is a standard
systems identification technique.

Simulation and experimental results confirm that it is not
necessary to have previous knowledge of the physical model
of the inverter and the load to apply predictive control.
In addition, these results confirm that this new strategy is
very robust in relation to parameter and model mismatch in
comparison to standard model predictive control.

In the light of these results, it is possible to consider the
robust application of predictive control in power electronics
systems with higher complexity in a very simple and sys-
tematic way, opening a new field of research and industrial
application.
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