4,375 research outputs found
Overconstrained estimates of neutrinoless double beta decay within the QRPA
Estimates of nuclear matrix elements for neutrinoless double beta decay
(0nu2beta) based on the quasiparticle random phase approximations (QRPA) are
affected by theoretical uncertainties, which can be substantially reduced by
fixing the unknown strength parameter g_pp of the residual particle-particle
interaction through one experimental constraint - most notably through the
two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted
that the g_pp adjustment via 2\nu2\beta data may bring QRPA models in
disagreement with independent data on electron capture (EC) and single beta
decay (beta^-) lifetimes. Actually, in two nuclei of interest for 0nu2beta
decay (Mo-100 and Cd-116), for which all such data are available, we show that
the disagreement vanishes, provided that the axial vector coupling g_A is
treated as a free parameter, with allowance for g_A<1 (``strong quenching'').
Three independent lifetime data (2nu2beta, EC, \beta^-) are then accurately
reproduced by means of two free parameters (g_pp, g_A), resulting in an
overconstrained parameter space. In addition, the sign of the 2nu2beta matrix
element M^2nu is unambiguously selected (M^2nu>0) by the combination of all
data. We discuss quantitatively, in each of the two nuclei, these
phenomenological constraints and their consequences for QRPA estimates of the
0nu2beta matrix elements and of their uncertainties.Comment: Revised version (27 pages, including 10 figures), focussed on Mo-100
and Cd-116. To appear in J. Phys. G: Nucl. Phys. (2008
Neutrinoless double-beta decay and seesaw mechanism
From the standard seesaw mechanism of neutrino mass generation, which is
based on the assumption that the lepton number is violated at a large
(~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is
ruled by the Majorana neutrino mass mechanism. Within this notion, for the
inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the
neutrinoless double-beta decay for nuclei of experimental interest with
different sets of nuclear matrix elements. The present-day results of the
calculation of the neutrinoless double-beta decay nuclear matrix elements are
briefly discussed. We argue that if neutrinoless double-beta decay will be
observed in future experiments sensitive to the effective Majorana mass in the
inverted mass hierarchy region, a comparison of the derived ranges with
measured half-lives will allow us to probe the standard seesaw mechanism
assuming that future cosmological data will establish the sum of neutrino
masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures;
additional reference
Instabilities in the Nuclear Energy Density Functional
In the field of Energy Density Functionals (EDF) used in nuclear structure
and dynamics, one of the unsolved issues is the stability of the functional.
Numerical issues aside, some EDFs are unstable with respect to particular
perturbations of the nuclear ground-state density. The aim of this contribution
is to raise questions about the origin and nature of these instabilities, the
techniques used to diagnose and prevent them, and the domain of density
functions in which one should expect a nuclear EDF to be stable.Comment: Special issue "Open Problems in Nuclear Structure Theory" of
Jour.Phys.G - accepted. 7 pages, 2 figure
Identification and quantification of particle growth channels during new particle formation
Atmospheric new particle formation (NPF) is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN). While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A) sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B) the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited); (C) sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D) ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E) sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F) carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5) is characteristic of freshly formed secondary organic aerosol; and (G) differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species
Nuclear matter response function with a central plus tensor Landau interaction
We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased
Error analysis of nuclear mass fits
We discuss the least-square and linear-regression methods, which are relevant
for a reliable determination of good nuclear-mass-model parameter sets and
their errors. In this perspective, we define exact and inaccurate models and
point out differences in using the standard error analyses for them. As an
illustration, we use simple analytic models for nuclear binding energies and
study the validity and errors of models' parameters, and uncertainties of its
mass predictions. In particular, we show explicitly the influence of
mass-number dependent weights on uncertainties of liquid-drop global
parameters.Comment: 10 RevTeX pages, 9 figures, submitted to Physical Review
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Double Beta Decay: Historical Review of 75 Years of Research
Main achievements during 75 years of research on double beta decay have been
reviewed. The existing experimental data have been presented and the
capabilities of the next-generation detectors have been demonstrated.Comment: 25 pages, typos adde
UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem
The demands of cutting-edge science are driving the need for larger and
faster computing resources. With the rapidly growing scale of computing systems
and the prospect of technologically disruptive architectures to meet these
needs, scientists face the challenge of effectively using complex computational
resources to advance scientific discovery. Multidisciplinary collaborating
networks of researchers with diverse scientific backgrounds are needed to
address these complex challenges. The UNEDF SciDAC collaboration of nuclear
theorists, applied mathematicians, and computer scientists is developing a
comprehensive description of nuclei and their reactions that delivers maximum
predictive power with quantified uncertainties. This paper describes UNEDF and
identifies attributes that classify it as a successful computational
collaboration. We illustrate significant milestones accomplished by UNEDF
through integrative solutions using the most reliable theoretical approaches,
most advanced algorithms, and leadership-class computational resources.Comment: 12 pages, 15 figures, Proceedings for Conference on Computational
Physics (CCP2011
- …