84,350 research outputs found
Supersolid and charge density-wave states from anisotropic interaction in an optical lattice
We show anisotropy of the dipole interaction between magnetic atoms or polar
molecules can stabilize new quantum phases in an optical lattice. Using a well
controlled numerical method based on the tensor network algorithm, we calculate
phase diagram of the resultant effective Hamiltonian in a two-dimensional
square lattice - an anisotropic Hubbard model of hard-core bosons with
attractive interaction in one direction and repulsive interaction in the other
direction. Besides the conventional superfluid and the Mott insulator states,
we find the striped and the checkerboard charge density wave states and the
supersolid phase that interconnect the superfluid and the striped solid states.
The transition to the supersolid phase has a mechanism different from the case
of the soft-core Bose Hubbard model.Comment: 5 pages, 5 figures
Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding
A study investigating the effect of sheet surface condition on resistance spot welding (RSW) of aluminium has been carried out. This concentrates on two automotive aluminium alloys; AA5754 and AA6111, used for structural and closure applications respectively. The results show the marked effect that surface condition can have on the RSW process. For AA5754 sheet incomplete removal of a âdisrupted surface layerâ prior to surface pretreatment is shown to have a detrimental effect on the RSW process. The solid wax lubricant used to assist metal forming leads to unpredictable changes in contact resistance, and consequently affects the process stability. For AA6111 closures the final surface topography can influence the RSW process. Standard âmillâ and electro-discharge textured (EDT) finish sheet surfaces were examined and preliminary results suggest that both are suitable for welding. The successful application of RSW of aluminium sheet requires careful consideration of the sheet surface condition. This requires close collaboration between material suppliers and automotive manufacturers
Boundary conditions in the Dirac approach to graphene devices
We study a family of local boundary conditions for the Dirac problem
corresponding to the continuum limit of graphene, both for nanoribbons and
nanodots. We show that, among the members of such family, MIT bag boundary
conditions are the ones which are in closest agreement with available
experiments. For nanotubes of arbitrary chirality satisfying these last
boundary conditions, we evaluate the Casimir energy via zeta function
regularization, in such a way that the limit of nanoribbons is clearly
determined.Comment: 10 pages, no figure. Section on Casimir energy adde
Commuting Simplicity and Closure Constraints for 4D Spin Foam Models
Spin Foam Models are supposed to be discretised path integrals for quantum
gravity constructed from the Plebanski-Holst action. The reason for there being
several models currently under consideration is that no consensus has been
reached for how to implement the simplicity constraints. Indeed, none of these
models strictly follows from the original path integral with commuting B
fields, rather, by some non standard manipulations one always ends up with non
commuting B fields and the simplicity constraints become in fact anomalous
which is the source for there being several inequivalent strategies to
circumvent the associated problems. In this article, we construct a new
Euclidian Spin Foam Model which is constructed by standard methods from the
Plebanski-Holst path integral with commuting B fields discretised on a 4D
simplicial complex. The resulting model differs from the current ones in
several aspects, one of them being that the closure constraint needs special
care. Only when dropping the closure constraint by hand and only in the large
spin limit can the vertex amplitudes of this model be related to those of the
FK Model but even then the face and edge amplitude differ. Curiously, an ad hoc
non-commutative deformation of the variables leads from our new model
to the Barrett-Crane Model in the case of Barbero-Immirzi parameter goes to
infinity.Comment: 41 pages, 4 figure
On the origin of the Fermi arc phenomena in the underdoped cuprates: signature of KT-type superconducting transition
We study the effect of thermal phase fluctuation on the electron spectral
function in a d-wave superconductor with Monte Carlo simulation.
The phase degree of freedom is modeled by a XY-type model with build-in d-wave
character. We find a ridge-like structure emerges abruptly on the underlying
Fermi surface in above the KT-transition temperature of the XY
model. Such a ridge-like structure, which shares the same characters with the
Fermi arc observed in the pseudogap phase of the underdoped cuprates, is found
to be caused by the vortex-like phase fluctuation of the XY model.Comment: 5 page
A scheme for demonstration of fractional statistics of anyons in an exactly solvable model
We propose a scheme to demonstrate fractional statistics of anyons in an
exactly solvable lattice model proposed by Kitaev that involves four-body
interactions. The required many-body ground state, as well as the anyon
excitations and their braiding operations, can be conveniently realized through
\textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to
the perfect localization of anyons in this model, we show that a quantum
circuit with only six qubits is enough for demonstration of the basic braiding
statistics of anyons. This opens up the immediate possibility of
proof-of-principle experiments with trapped ions, photons, or nuclear magnetic
resonance systems.Comment: 4 pages, 3 figure
Population synthesis of accreting white dwarfs: II. X-ray and UV emission
Accreting white dwarfs (WDs) with non-degenerate companions are expected to
emit in soft X-rays and the UV, if accreted H-rich material burns stably. They
are an important component of the unresolved emission of elliptical galaxies,
and their combined ionizing luminosity may significantly influence the optical
line emission from warm ISM. In an earlier paper we modeled populations of
accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red
giant companions with the population synthesis code \textsc{BSE}, and then
following their evolution with a grid of evolutionary tracks computed with
\textsc{MESA}. Now we use these results to estimate the soft X-ray
(0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the
number of super-soft X-ray sources for galaxies with different star formation
histories. For the starburst case, these quantities peak at Gyr and
decline by orders of magnitude by the age of 10 Gyr. For stellar
ages of ~10 Gyr, predictions of our model are consistent with soft X-ray
luminosities observed by Chandra in nearby elliptical galaxies and He II
4686 line ratio measured in stacked SDSS spectra of retired
galaxies, the latter characterising the strength and hardness of the UV
radiation field. However, the soft X-ray luminosity and
He~II~4686 ratio are significantly overpredicted for stellar
ages of Gyr. We discuss various possibilities to resolve this
discrepancy and tentatively conclude that it may be resolved by a modification
of the typically used criteria of dynamically unstable mass loss for giant
stars.Comment: 13 pages, 12 figures, MNRAS accepte
Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA
Accreting, nuclear-burning white dwarfs have been deemed to be candidate
progenitors of type Ia supernovae, and to account for supersoft X-ray sources,
novae, etc. depending on their accretion rates. We have carried out a binary
population synthesis study of their populations using two algorithms. In the
first, we use the binary population synthesis code \textsf{BSE} as a baseline
for the "rapid" approach commonly used in such studies. In the second, we
employ a "hybrid" approach, in which we use \textsf{BSE} to generate a
population of white dwarfs (WD) with non-degenerate companions on the verge of
filling their Roche lobes. We then follow their mass transfer phase using the
detailed stellar evolution code \textsf{MESA}. We investigate the evolution of
the number of rapidly accreting white dwarfs (RAWDs) and stably nuclear-burning
white dwarfs (SNBWDs), and estimate the type Ia supernovae (SNe Ia) rate
produced by "single-degenerate" systems (SD). We find significant differences
between the two algorithms in the predicted numbers of SNBWDs at early times,
and also in the delay time distribution (DTD) of SD SNe Ia. Such differences in
the treatment of mass transfer may partially account for differences in the SNe
Ia rate and DTD found by different groups. Adopting 100\% efficiency for helium
burning, the rate of SNe Ia produced by the SD-channel in a Milky-way-like
galaxy in our calculations is , more than an
order of magnitude below the observationally inferred value. In agreement with
previous studies, our calculated SD DTD is inconsistent with observations.Comment: 13 pages,11 figures, accepted by MNRA
- âŠ