874 research outputs found

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Full text link
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    A new bound of the ℒ2[0, T]-induced norm and applications to model reduction

    Get PDF
    We present a simple bound on the finite horizon ℒ2/[0, T]-induced norm of a linear time-invariant (LTI), not necessarily stable system which can be efficiently computed by calculating the ℋ∞ norm of a shifted version of the original operator. As an application, we show how to use this bound to perform model reduction of unstable systems over a finite horizon. The technique is illustrated with a non-trivial physical example relevant to the appearance of time-irreversible phenomena in statistical physics

    Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction

    Full text link
    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding.Comment: 13 pages, 7 Postscript figure

    Stability of graph communities across time scales

    Get PDF
    The complexity of biological, social and engineering networks makes it desirable to find natural partitions into communities that can act as simplified descriptions and provide insight into the structure and function of the overall system. Although community detection methods abound, there is a lack of consensus on how to quantify and rank the quality of partitions. We show here that the quality of a partition can be measured in terms of its stability, defined in terms of the clustered autocovariance of a Markov process taking place on the graph. Because the stability has an intrinsic dependence on time scales of the graph, it allows us to compare and rank partitions at each time and also to establish the time spans over which partitions are optimal. Hence the Markov time acts effectively as an intrinsic resolution parameter that establishes a hierarchy of increasingly coarser clusterings. Within our framework we can then provide a unifying view of several standard partitioning measures: modularity and normalized cut size can be interpreted as one-step time measures, whereas Fiedler's spectral clustering emerges at long times. We apply our method to characterize the relevance and persistence of partitions over time for constructive and real networks, including hierarchical graphs and social networks. We also obtain reduced descriptions for atomic level protein structures over different time scales.Comment: submitted; updated bibliography from v

    A quantitative examination of the impact of featured articles in Wikipedia

    Get PDF
    This paper presents a quantitative examination of the impact of the presentation of featured articles as quality content in the main page of several Wikipedia editions. Moreover, the paper also presents the analysis performed to determine the number of visits received by the articles promoted to the featured status. We have analyzed the visits not only in the month when articles awarded the promotion or were included in the main page, but also in the previous and following ones. The main aim for this is to assess the attention attracted by the featured content and the different dynamics exhibited by each community of users in respect to the promotion process. The main results of this paper are twofold: it shows how to extract relevant information related to the use of Wikipedia, which is an emerging research topic, and it analyzes whether the featured articles mechanism achieve to attract more attention

    Temporal characterization of the requests to Wikipedia

    Get PDF
    This paper presents an empirical study about the temporal patterns characterizing the requests submitted by users to Wikipedia. The study is based on the analysis of the log lines registered by the Wikimedia Foundation Squid servers after having sent the appropriate content in response to users' requests. The analysis has been conducted regarding the ten most visited editions of Wikipedia and has involved more than 14,000 million log lines corresponding to the traffic of the entire year 2009. The conducted methodology has mainly consisted in the parsing and filtering of users' requests according to the study directives. As a result, relevant information fields have been finally stored in a database for persistence and further characterization. In this way, we, first, assessed, whether the traffic to Wikipedia could serve as a reliable estimator of the overall traffic to all the Wikimedia Foundation projects. Our subsequent analysis of the temporal evolutions corresponding to the different types of requests to Wikipedia revealed interesting differences and similarities among them that can be related to the users' attention to the Encyclopedia. In addition, we have performed separated characterizations of each Wikipedia edition to compare their respective evolutions over time

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Get PDF
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    Stationary distributions of continuous-time Markov chains: a review of theory and truncation-based approximations

    Get PDF
    Computing the stationary distributions of a continuous-time Markov chain involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and cannot be solved analytically or numerically. Several approximation schemes overcome this issue by truncating the state space to a manageable size. In this review, we first give a comprehensive theoretical account of the stationary distributions and their relation to the long-term behaviour of the Markov chain, which is readily accessible to non-experts and free of irreducibility assumptions made in standard texts. We then review truncation-based approximation schemes paying particular attention to their convergence and to the errors they introduce, and we illustrate their performance with an example of a stochastic reaction network of relevance in biology and chemistry. We conclude by elaborating on computational trade-offs associated with error control and some open questions

    Bounding the stationary distributions of the chemical master equation via mathematical programming

    Get PDF
    The stochastic dynamics of biochemical networks are usually modelled with the chemical master equation (CME). The stationary distributions of CMEs are seldom solvable analytically, and numerical methods typically produce estimates with uncontrolled errors. Here, we introduce mathematical programming approaches that yield approximations of these distributions with computable error bounds which enable the verification of their accuracy. First, we use semidefinite programming to compute increasingly tighter upper and lower bounds on the moments of the stationary distributions for networks with rational propensities. Second, we use these moment bounds to formulate linear programs that yield convergent upper and lower bounds on the stationary distributions themselves, their marginals and stationary averages. The bounds obtained also provide a computational test for the uniqueness of the distribution. In the unique case, the bounds form an approximation of the stationary distribution with a computable bound on its error. In the non unique case, our approach yields converging approximations of the ergodic distributions. We illustrate our methodology through several biochemical examples taken from the literature: Schl¹ogl’s model for a chemical bifurcation, a two-dimensional toggle switch, a model for bursty gene expression, and a dimerisation model with multiple stationary distributions

    The exit time finite state projection scheme: bounding exit distributions and occupation measures of continuous-time Markov chains

    Get PDF
    We introduce the exit time finite state projection (ETFSP) scheme, a truncation- based method that yields approximations to the exit distribution and occupation measure associated with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations bound the measures from below; (ii) the total variation distances between the approximations and the measures decrease monotonically as states are added to the truncation; and (iii) the scheme converges, in the sense that, as the truncation tends to the entire state space, the total variation distances tend to zero. Furthermore, we give a computable bound on the total variation distance between the exit distribution and its approximation, and we delineate the cases in which the bound is sharp. We also revisit the related finite state projection scheme and give a comprehensive account of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two biological examples: the computation of the first passage time associated with the expression of a gene, and the fixation times of competing species subject to demographic noise
    • 

    corecore