
UCRL-CONF-228704

Asynchronous Event-Driven
Particle Algorithms

A. Donev

March 6, 2007

SYMPOSIUM ON ASYNCHRONOUS METHODS IN
SCIENTIFIC AND MATHEMATICAL COMPUTING
San Diego, CA, United States
June 12, 2007 through June 15, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71306355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Asynchronous Event-Driven Particle Algorithms

Aleksandar Donev∗

Lawrence Livermore National Laboratory, P.O.Box 808, Livermore, CA 94551-9900

1st March 2007

Abstract

We present in a unifying way the main components of
three examples of asynchronous event-driven algorithms for
simulating physical systems of interacting particles. The
first example, hard-particle molecular dynamics (MD), is
well-known. We also present a recently-developed diffusion
kinetic Monte Carlo (DKMC) algorithm, as well as a novel
event-driven algorithm for Direct Simulation Monte Carlo
(DSMC). Finally, we describe how to combine MD with
DSMC in an event-driven framework, and discuss some
promises and challenges for event-driven simulation of re-
alistic physical systems.

1 Introduction

There is a wide range of particle systems from com-
putational science problems that are best simulated us-
ing asynchronous event-driven (AED) algorithms. Ex-
amples include: molecular dynamics (MD) for systems
of hard particles [18, 3] such as disordered packings [2],
granular materials [7], colloids [8, 15] and particle-laden
flows [17]; kinetic Monte Carlo (KMC) [12] simulation
of diffusion-limited reactions (DKMC) [13] such as nu-
cleation, growth, and coarsening during epitaxial growth
[14], diffusion quantum Monte Carlo [16], nuclear reactions
[20], bio-chemical reactions [19], and self-assembly of
nano-structures [9]; direct simulation Monte Carlo (DSMC)
[1] for micro hydrodynamics [6], granular flows [7], and
plasma flows [10]; contact dynamics for modeling sys-
tems of rigid bodies computer graphics [11]; and many
others. As of yet unexplored are multi-scale and multi-
physics algorithms such as combined flow and diffusion
with (bio)chemical reactions.

In this work we will focus on a class of particle-based
problems that are very common in computational materials
science and are well-suited for AED simulation. Specif-
ically, we will focus on the simulation of large systems of
mobile particles interacting with short-range pairwise (two-
body) potentials (forces). Our goal will be to reveal the
common building blocks of these simulations (e.g., event

∗This work was performed under the auspices of the U.S. Department
of Energy by the University of California Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

queues, neighbor searches), but also to highlight the com-
ponents that are problem specific (e.g., event prediction and
processing). We will present these components in some de-
tail for three specific examples: hard-particle MD, DKMC,
and DSMC. Through the discussion of these examples we
will demonstrate the undeniable advantages of AED algo-
rithms, but we will also reveal the difficulties with using
AED algorithms for realistic models.

1.1 Background

We consider the simulation of the time evolution of a
collection of N interacting particles in d-dimensions start-
ing from some initial condition. At any point in time, the
system Q = (Q,B) is characterized by the configuration
Q = (q1, . . . ,qN ), containing at least the centroid posi-
tions ri for every particle i, and the additional global in-
formation B, which may involve variables such as bound-
ary conditions or external fields. The number of particles
N may also vary with time. For each particle i we may
consider an arbitrary number of attributes in addition to
the position of the centroid, for example, q may also con-
tain the linear and/or angular velocity, the orientation and/or
the chemical specie (shape, charge, mass, internal compo-
sition) of particle i. Typically each particle configuration
qi will at least contain an integer that identifies its specie
1 ≤ si ≤ Ns, and some information will be shared among
all particles belonging to the same specie (ex., the charge
or mass). In particular, the symmetric interaction table Iαβ

stores Ns(Ns +1)/2 logical (true or false) entries that spec-
ify whether species α and β interact or not.

Two particles i and j are overlapping only if a certain
(generalized) distance between them dij(qi,qj) ≥ 0 is less
than some cutoff distance or diameter Dij . Overlapping
particles react with each other in an application specific
manner. Typically the type of reaction and Dij depends
(only) on the species of the two particles and Dij , but there
may also be dependencies on time or some other external
field parameters. For example, for (additive) hard spheres
Dij = (Di + Dj)/2 and the type of reaction is (hard-core)
repulsion. For a non-interacting pair of particles one may
set Dij = 0. Particles may also overlap with boundaries
of the simulation domain, such as hard walls or reactive
surfaces, however, typically the majority of interactions are
among particles.

1



We will assume that the time evolution (motion) of the
system is mostly smooth with the exception of certain dis-
crete events, which lead to discontinuous changes in the
configuration of a certain collection of particles. Events
may involve a single particle i, such as the change of the in-
ternal state of the particle (e.g., decay reactions, spin flips),
sudden changes in the particle velocity, etc. Events may
also involve pairs of particles, for example, the collision
(exchange of momentum) between two particles i and j,
or a chemical reaction between two overlapping particles i
and j leading to the creation and/or destruction of particles.
For now we will ignore events involving more than two par-
ticles. Some events may also involve global variables in B
and thus implicitly affect all of the particles.

We will refer to simulations as event-driven (also called
discrete event simulation [5]) if the state of the system is
evolved discontinuously in time from one event to another,
predicting the time of the next event whenever an event is
processed. This is in contrast with the more common time-
driven simulations, where the state changes continuously
in time and is evolved over a sequence of small time steps
∆t, discovering and processing events at the end of the time
step. Typically, particle-based time-driven algorithms are
not exact, in the sense that they may miss events when the
time step used is too large. Therefore, the time step must be
smaller than the estimated slowest time scales in the prob-
lem. This leads to large inefficiencies when there are mul-
tiple dynamically-changing time scales. On the other hand,
event-driven algorithms automatically adjust the time step.

We will focus on asynchronous event-driven (AED) algo-
rithms. In asynchronous algorithms, there is a global sim-
ulation time t, typically the time when the last processed
event occurred, and each particle is at a different point in
time ti ≤ t, typically the last time it participated in an event.
This is to be contrasted to synchronous event-driven algo-
rithms, where all of the particles are at the same time t. One
of the most important examples of a synchronous event-
driven algorithm in materials science is the n-fold algorithm
for performing kinetic (dynamic) Monte Carlo simulations
[12]. The applicability and efficiency of synchronous algo-
rithms hinge on the fact that the state of the system does
not change in-between events, as is common in lattice mod-
els where the positions of the particles are discrete. For
example, atoms may stay in the immediate vicinity of the
crystal lattice sites and only sometimes hop to nearby sites.
In the types of problems that we will consider, the positions
of the particles will be continuous and continuously chang-
ing even in-between events. Therefore, we will not discuss
synchronous algorithms further. It is important to point out
that even in cases where the evolution of the system consists
entirely of discrete jumps (e.g., Markov chain transitions),
asynchronous algorithms may be more efficient than syn-
chronous ones [9]. In general, one may combine the two

algorithms by using the more general asynchronous algo-
rithm at the top level but treating a subset of the particles
synchronously, as if they are a super-particle with complex
internal structure.

1.2 Model Examples

Atomistic or molecular-level modeling is one of the foun-
dations of computational materials science. The two most
popular types of algorithms used in the simulation of mate-
rials are molecular dynamics (MD) and Monte Carlo (MC)
algorithms. For our purposes, the only important difference
between the two is that MD is a deterministic algorithm,
in which deterministic equations of motions are solved,
and Monte Carlo is a stochastic procedure in which sam-
ple paths from an ensemble of weighted paths is generated.
In both cases one typically averages over multiple trajecto-
ries, starting with different initial conditions and/or using
a different random number seed. From the perspective of
AED algorithms, this means that random number genera-
tors (RNGs) are involved in the determination of the time
certain events occur as well as in the actual processing of
those events.

The very first molecular dynamics (MD) calculations
simulated a system of hard disks and hard spheres and used
an AED algorithm. The hard-sphere system is a collection
of non-overlapping spheres in a Euclidian space of dimen-
sion d, contained within a bounded region, each moving
with a certain velocity vi = ṙi. Pairs of spheres collide
and the colliding particles bounce off elastically, preserving
both linear momentum and energy. Many generalizations
can be considered, for example, the spheres may be grow-
ing in size and/or the particles may be nonspherical [2], the
collisions may not be perfectly elastic [7], some of the parti-
cles may be tethered to each other to form structures such as
polymer chains [18], etc. The general features are that parti-
cles move along simple deterministic paths (such as straight
lines) in-between binary collisions, which are the primary
type of event. The events take zero time and involve deter-
ministic changes of the velocities of the colliding particles.
The ballistic motion of the particles is described by New-
ton’s equations of motion, mv̇i = Fi (i.e., deterministic
ODEs). Event-driven MD algorithms for hard particles are
discussed in considerable detail in Ref. [3] and elsewhere,
here we only present the essential components.

The motion of the particles is not always determinis-
tic, however. In particular, an important class of prob-
lems concerns diffusing particles, that is, particles whose
velocity changes randomly very frequently (i..e, they make
many small steps in random directions). The motion of the
particles is probabilistic, in the sense that the probability
c(r, t + ∆t) of finding a particle at a given position r at a
certain time ∆t, assuming it started at the (space and time)

2



origin, is the solution to the time-dependent diffusion equa-
tion ∂tc = D∇

2c (a deterministic PDE), where D is the
particle diffusion coefficient. A variety of reactions may
occur when a pair of particles collides, for example, par-
ticles may repel each other (colloids [15]), they may stick
or begin merging together (paint suspensions), or they may
undergo a chemical reaction that consumes the reacting par-
ticles and produces zero, one, two, or possibly more new
particles (a wide range of diffusion-limited reactions in ma-
terials [19, 13] and biological systems [19]). Several ap-
proximate event-driven KMC algorithms have been used in
the past for this problem [19]. Here we will describe a
recently-developed exact AED algorithm for simulating a
collection of diffusing hard particles [13]. It is worth point-
ing out that one may also consider particles whose trajec-
tories are a combination of ballistic and diffusive motion,
that is, motion that is described by Langevin’s equations (or
other stochastic ODEs or even PDEs). In that sense, we
will see that both the MD and MC algorithms share many
common features.

A somewhat different MC twist on MD is direct simu-
lation MC (DSMC) [1]. We will consider DSMC as a fast
alternative to MD, even though it can also be viewed as a
particle-based MC method for solving the Boltzmann equa-
tion in dilute fluids. From our perspective, DSMC is an ap-
proximate variant of MD in which the particle collisions are
not processed exactly, rather, particle collisions are stochas-
tic and (attempt to) follow the same probability distributions
as would have exact MD. Specifically, nearby particles are
randomly chosen to undergo stochastic collisions and ex-
change momentum and energy, thus leading to local conser-
vation laws and hydrodynamic behavior. DSMC is applica-
ble in cases when the structure of the fluid and the detailed
motions of all of the particles do not matter, as is the case
with solvent molecules (e.g., water) in fluid flow problems
or large-scale granular flows [7]. Traditionally DSMC has
been implemented using a time-driven approach, in which
at each time step particles are first propagated in a ballistic
(convective) fashion, and then a certain number of stochas-
tic particle collisions among nearby particles are processed.
Here we describe a novel AED algorithm for DSMC, and
demonstrate how it can be integrated with AED MD in or-
der to replace the expensive MD with cheaper DSMC for
some of the species (e.g., solvent molecules).

2 A General AED Particle Algorithm

In this work we focus on systems where particles only in-
teract with nearby particles. We will formalize this by defin-
ing a geometric hierarchy of regions around a given parti-
cle. These particle proximity hierarchies are at the core of
geometry-specific (GS) aspects of AED simulation, which
can be reused for different application-specific (AS) rules

for moving and interacting the particles. We will assign a
hard core Ci to each particle such that a particle may overlap
with another particle only if their cores overlap. For (addi-
tive) hard spheres, the core is nothing more than the particle
itself. Next, we protect particle i against other particles by
enclosing it inside a protective region Pi, Ci ⊆ Pi, that is
typically disjoint from the majority of other protective re-
gions. Finally, we assume that every protective region i is
contained within a neighborhood regionNi, Pi ⊆ Ni. The
set of neighbors of i consists of the particles j whose neigh-
borhood regions intersect Ni, Ni ∩ Ni 6= 0, and which are
of a specie interacting with the specie of particle i.

We will assume that when a particle does not interact
with other particles we can easily follow its time evolution
(motion), that is, given the current configuration qi(t), we
can probabilistically determine the position at a later time
qi(t + ∆t). This is a single-particle problem and can typ-
ically be solved analytically. For example, in MD the par-
ticle trajectory is a unique (i.e., deterministic) straight path,
ri(t+∆t) = ri(t)+vi∆t, while in diffusion problems it is
the solution to a (stochastic) Langevin equation of motion.
Event-driven algorithms are efficient because they use such
analytic solutions to quickly propagate particles over poten-
tially large time steps as long as they are far enough from
other (interacting) particles. We will also assume that one
can solve two-body problems for the case when two parti-
cles are isolated from other particles but may interact with
each other. These two-body problems are typically much
more difficult to solve (quasi) analytically. Specific exam-
ples will be given later.

An AED algorithm consists of processing a sequence of
time-ordered events. Each particle i must store some basic
information needed to predict and process events associated
with it. The particle time ti specifies the last time the config-
uration of particle i was updated, ti ≤ t, where t is the cur-
rent simulation time. Each particle stores a prediction for its
impending event (te, p, ν), specified via the predicted time
of occurrence te (a floating point number), the event part-
ner p (an integer), and the event qualifier (type of event) ν
(also an integer). Note that the event schedules must be kept
symmetric at all times, that is, if particle i has an impending
event with j, then particle j must have an impending event
with i. A particle may store multiple event predictions, in
order to avoid re-predicting events if the impending event
is invalidated, however, we will not explicitly handle this
possibility due to the complications it introduces.

The exact interpretation of p and ν, for a given particle i,
is application- and geometry-specific. Some common types
of events can be pre-specified by reserving certain values of
the event partner p:

p = 0 An update of the event prediction for i, not requiring
an update of qi. The value ν = 0 means that qi has
not changed since the last prediction for i (thus allowing

3



Algorithm 1 Process the next event in the event queue.
1. Find (query) the top of the event queue (usually a heap) to find the next particle i to have an event with p at te. Note that

steps marked as (AS+C) below may reorder the queue and/or cycle back to this step.
2. Find the next “external” event to happen at time tex, possibly using an additional event queue (AS).
3. If tex < te then process the external event (AS) and cycle back to step 1.
4. Remove i from the event queue and advance the global simulation time t← te.
5. If p = 0 and ν = −1 then build a new Ni and then check if i overlaps with any of its new neighbors (GS). If it does,

process the associated reactions (AS+C), otherwise build a new Pi as in step 9a.
6. Else if p = i then update the configuration of particle i to time t using a single-particle propagator (AS), and set ti ← t.
7. Else if p = i and ν 6= 0 then process the single-particle event (AS+C). If ν > 0 then search for overlaps as in step 5.
8. Else if 1 ≤ p ≤ N then update the configuration of particles i and j = p using a two-particle propagator (AS), set ti ← t

and tj ← t, and then process the binary reaction between i and j (AS+C). This may involve inserting particle j back into
the queue with te = t, p = 0, ν = 0.

9. Else if p =∞, then update qi and ti as in step 6. If ν > 0 then process the boundary event (AS+C), otherwise

(a) If ν = 0 then update Pi (AS+GS), typically involving an iteration over the neighbors of i.
(b) Else if ν = −1 then updateNi and identify the new neighbors of particle i (GS).
(c) Else if ν < −1 process the geometry-induced boundary event (GS+AS).

10. Predict a new te, p, and ν for particle i by finding the minimal time among the possible events listed below. Each
successive search needs to only extend up to the current minimum event time, and may return an incomplete prediction
te > t, p = 0, ν = 0, where te provides a lower bound on the actual event time.

(a) When particle i leaves Pi orNi (AS).
(b) When particle i undergoes a single-particle event (AS).
(c) When particle i first reacts with a neighbor j (AS), as found by searching over all neighbors j whose protective region
Pj intersects Pi (GS). If a particle j gives the current minimum event time, remove it from the event queue. If such
a particle j has an event partner that is another particle (third party) k 6= i, update the positions of j and k using the
two-particle propagator as in step 8, invalidate k’s event prediction by setting its te ← t, p ← 0, ν ← 0, and update
its position in the event queue.

11. Insert particle i back into the event heap with key te and go back to step 1.

stored information from previous predictions to be reused
if needed), ν = 1 means that an event occurred which did
not alter the geometry (for example, the position of i is
the same but its velocity changed), while ν = −1 means
that this particle was just inserted into the system and a
geometry update is necessary as well.

p = i A single-particle event that requires an update of qi.
The special value ν = 0 denotes a simple time advance of
i without any additional event processing, ν < 0 denotes
an event that does not change the geometry (for example,
only the velocity of a particle changes), and ν > 0 is
used for additional AS events that may also change the
geometry (e.g., particle decay).

1 ≤ p ≤ N and p 6= i An unprocessed binary reaction be-
tween particles i and j = p, with additional AS informa-
tion about the type of reaction stored in ν, for example,
elastic collision, a certain chemical reaction, etc.

p =∞ A “boundary” event requiring the update of the par-
ticle geometry. If ν = 0 then only the protective region

Pi needs to be updated, if ν = −1 then the neighbor-
hood Ni needs to be updated (collision with a virtual
boundary), ν < −1 denotes collisions with pre-specified
boundaries (such as hard walls), and ν > 0 specify AS
boundary events (such as collisions with reactive sur-
faces).

−2N ≤ p < 0 and p = −∞ are reserved for future uses
(e.g., parallel implementation).

It is important to point out that we are not suggesting that
an actual implementation needs to use integers to identify
different types of events. In an object-oriented framework
events may be represented as objects that inherit from a base
event class and have methods to handle them, with the base
implementation providing handlers for certain pre-defined
(single, pair, and boundary) types of events. We do not
discuss here the possible ways to organize an inheritance
hierarchy of classes for AED simulations, since such a hi-
erarchy involves multiple complex components, notably a
module for handling boundary conditions in static and dy-
namic environments, a module for handling static and dy-

4



namic particle geometry (overlap, neighborhoods, neighbor
searches, etc.), an event-dispatcher, a visualization module,
application-specific modules for event scheduling and han-
dling, etc.

Algorithm 1 represents the main event loop in the AED
algorithm, which processes events one after the other in
the order they occur and advances the global time t ac-
cordingly. It uses a collection of other auxiliary geometry-
specific (GS) or application-specific (AS) steps, as marked
in the algorithm outline. Specific examples of various GS
and AS steps are given later.

3 Model Examples

In this section we present the handling of the various AS
and GS steps in Algorithm 1. We focus on the geometry-
specific handling for the case of hard spheres first, and then
discuss three specific model applications.

3.1 Near-Neighbor Search

All large-scale particle-based algorithms use various ge-
ometric techniques to make the number of neighbors of
a given particle O(1) instead of O(N). Reference [3]
provides extensive details (and illustrations) of these tech-
niques for hard spheres and ellipsoids; here we summarize
only the essential components.

3.1.1 Linked List Cell (LLC) Method

The most basic technique is the so-called linked list cell
(LLC) method. The simulation domain, typically an orthog-
onal box, is partitioned into Nc cells, typically cubes. Each
particle i stores the cell ci to which its centroid belongs,
and each cell c stores a list Lc of all the particles it contains
(usually we also store the total number of particles in the
cell). Given a particle and a range of interaction, the lists of
potential neighbors is determined by scanning through the
neighboring cells. For maximal efficiency the cell should
be larger than the largest range of interaction so that only
the nearest-neighbor cells need to be searched. There are
more sophisticated neighbor search methods developed in
the computational geometry community, such as using (col-
ored) quad/oct-trees, however, we are not aware of their use
in AED implementations, likely because of the implemen-
tation complexity. This is an important subject for future
research.

In cases when not all species interact with all other
species, it may be beneficial to use masking of the cells.
Namely, each cell stores a mask of Nbits bits, Nbits > Ns,
where bit γ is set if the cell may contain a particle of specie
γ. These masks should be cleared and recreated periodi-
cally. For each specie we store an interaction bitmask based

on the interaction table, and during neighbor searches for
a given particle we only search inside cells that may con-
tain interacting particles (i.e., we AND the corresponding
masks).

It is important to point out that in certain applications the
cells themselves play a crucial role in the algorithm, typi-
cally as a means to provide mesoscopic averages of physical
variables (averaged over the particles in a given cell) used
to switch from a particle-based model to a continuum de-
scription. For example, in PIC (particle-in-cell) algorithms
for plasma simulation, the cells are used to solve for back-
ground electric fields using FFT transforms [10]. In DSMC,
the algorithm stochastically collides pairs of particles that
are in the same cell. In some applications, events may be
associated with the cells themselves, instead of or in addi-
tion to the events associated with particles [4].

For a method that only uses the LLC method for neigh-
bor searches, the neighborhood region Ni is composed of
the (typically 3d, where d is the dimensionality) cells that
neighbor the cell that particle i belongs to. The protection
region Pi may be a simple geometric region like a sphere
inscribed in Ni (sphere of diameter smaller than the cell
size), it may be the cell itself, or it may be that Pi ≡ Ni.

3.1.2 Near-Neighbor List (NNL) Method

Another neighbor search method is the near-neighbor list
(NNL) method, which is described for hard particles in Ref.
[3]. The idea is to use asNi a region that (when it is created)
is just an enlargement of the particle by a certain scaling
factor µ > 1. When Ni is created the method also creates
a list of all the neighborhoods that intersect it, to form the
NNL of particle i (hard walls or other boundaries may also
be near neighbors). This list of (potential) interactions can
then be reused until the particle core Ci protrudes outside
of Ni. This reuse leads to great savings in situations where
particles are fairly localized. Note that the LLC method
is still used in order to build Ni even if NNLs are used,
in order to keep the maximal cost of pairwise searches at
O(N) instead of O(N2). In some situations (such as mixed
MD/DSMC simulations as we describe later) one may use
NNLs only for a subset of the particles and use the more
traditional LLCs for others.

3.2 Molecular Dynamics

Hard-particle molecular dynamics is one of the first ap-
plications of AED algorithms in computational science, and
is discussed in more detail in Ref. [3]. The basic type of
event are binary collisions, which alter particle momenta,
typically using elastic collision laws (conservation of mo-
mentum and energy). Collisions are assumed to have no
duration and (very unlikely) triple collisions are broken up

5



into a sequence of binary ones. In-between collisions par-
ticles move ballistically along simple trajectories such as
straight lines (force-free motion) or parabolas (constant-
acceleration motion). For hard spheres, event time predic-
tions are based on (algebraic) methods for finding the first
root of a polynomial equation (linear, quadratic or quartic
[8]). For particle shapes that include orientational degrees
of freedom, such as ellipsoids, numerical root finding tech-
niques need to be used [3].

When LLCs are used, the main type of boundary event
are cell transfers, which occur when the centroid of a par-
ticle i collides with the boundary of the cell ci. If the cell
is at the boundary, a unit cell change occurs for periodic
boundaries (i.e., wrapping around the torus), and hard-wall
collisions occur for hard-wall boundaries. When NNLs are
used, cell transfers do not have to be processed (i.e., one can
set Pi ≡ Ni), unless it is important to have accurate LLCs
(as in DSMC).

The main AS steps in Algorithm 1 for (classical) MD
simulations are:

• Step 6 consists of updating the particle position and pos-
sibly also velocity ballistically.

• Step 8 consists of updating the positions of each of the
particles separately, as in step 6, and then updating their
velocities taking into account the collisional exchange of
momentum.

• For collisions with hard-walls in Step 9, the particle ve-
locity is updated accordingly. Cell transfers in step 9c
consist of updating the LLCs by removing the particle
from its current cell and inserting it into its new cell
(found based on the direction of motion of the centroid).
If the new cell is across a periodic boundary, the cen-
troid is translated by the appropriate lattice cell vector (if
NNLs are used, this may require updating information
relating to periodic boundaries for each interaction).

• Step 10 is the most involved and time consuming:

– In step 10a, the time of the next cell transfer is pre-
dicted based on the centroid velocity. If NNLs are
used, then the time of (virtual) collision of the core Ci

with the interior wall ofNi is also calculated.
– In step 10c, predictions are made for binary collisions

between particle i and each of the particles in neigh-
boring cells, or each of the particles in the NNL of
particle i.

3.3 Diffusion Monte Carlo

An exact AED algorithm for kinetic MC simulation of
a collection of diffusing particles was recently proposed in
Ref. [13]. The main difference with MD is that the equation
of motion of the particles is not a deterministic but rather a
stochastic ODE. The algorithm simulates a trajectory that

is sampled from the correct probability distribution. For
pure diffusion with transport coefficient D, the probabil-
ity c(∆r, ∆t) of finding an isolated point particle at a dis-
placement ∆r at time ∆t is the Green’s function for the
(time-dependent) diffusion equation, ∂tc = D∇

2c, with no
additional boundary conditions. In three dimensions

c(∆r, ∆t) = (4π∆t)
−1/2

exp

[

−
∆r2

4D∆t

]

.

Particles that have a finite extent, such as spheres and cubes,
are easily handled by considering their centroids as the dif-
fusing point particles. Particles with orientational degrees
of freedom are more difficult to handle and for now we fo-
cus on the sphere case.

Assume that the protective region Pi is disjoint from all
other protective regions and the core Ci is restricted to re-
main within Pi. For point particles, one can show that
the probability c(∆r, ∆t), conditional on the fact that the
particle never leaves the interior of Pi, is again a Green’s
function for the diffusion equation but with the additional
boundary condition that c vanish on the boundary of Pi. A
single-particle propagator consists of sampling from such
a probability distribution c1. For simple protective regions
such as cubes or spheres relatively simple closed-form so-
lutions for c1 exist. The probability distribution c1 is only
valid under the assumption that a given particle i remains
insidePi. From c1 (specifically, the flux ∇c1 on the bound-
ary of Pi) one can also find the probability distribution that
a particle first leaves Pi for the first time at a time t̃ and at
position r̃, i.e., the first-passage probability J1(t̃, r̃). This
distribution can be used to sample a time at which particle
is propagated to the surface of Pi and Pi is updated.

The basic idea of the AED DKMC algorithm is to pro-
tect the particles with disjoint protective regions and then
use single-particle propagators to evolve the system. Typ-
ically the protective regions would have the same position
and shape as the particle itself but be enlarged by a cer-
tain scaling factor µP > 1. At some point in time, how-
ever, two particles i and j will collide and thus cannot be
protected with disjoint regions. Such nearly-colliding pairs
are protected by a pair protection Pij (e.g., two intersect-
ing spheres, each centered around one of the particles). A
pair propagator c2(∆ri, ∆rj , ∆t) is used to either find the
first-passage time, that is, the time when one of the parti-
cles leaves Pij , or to propagate the pair conditional on the
fact that both particles remain inside Pij . Analytical so-

lutions for c2 = c
(D)
2 c

(CM)
2 can be found by splitting the

problem into independent diffusion problems for the center
of (diffusional) mass r

(CM)
ij = (∆ri + ∆rj)/2 and for the

difference r
(D)
ij = ∆ri−∆rj walker (with some additional

weighting factors for unequal particles). The condition for
collision dij = Dij forms an additional absorbing boundary
for the difference walker, and a collision occurs whenever

6



a first-passage propagator J
(D)
2 (r̃

(D)
ij , t̃(D)) samples a point

on that boundary. For repulsive particles [15] the boundary
dij = Dij would be reflective (zero-flux) instead of ab-
sorbing. If the particles are cubes closed-form solutions can
easily be found for the pair propagators [13], however, in
general, two-body propagators are considerably more com-
plex (and thus costly) than single-body ones.

Geometric near-neighbor searches are an essential com-
ponent of the DKMC algorithm, and the same methods
(LLCs and NNLs) as in MD are used. Cell transfers are not
explicitly predicted or processed in this algorithm, rather,
whenever the position of a particle is updated the LLCs
need to be updated accordingly. When NNLs are used, the
collision of particle i with Ni may be sampled exactly, or,
alternatively, the neighborhood Ni may be updated when-
ever a particle is very close to the inner wall of Ni. We
say that a particle i is protected against particle j or pair
jk if Pi is disjoint from Pj or Pjk (an unprotected parti-
cle has Pi ≡ Ni), similarly for pairs of particles. The goal
of neighbor searches is to protect a particle i against other
particles and pairs with the largest possible Pi. There is
a balance between rebuilding protective and neighborhood
regions too often and propagating the particles over smaller
steps, and some experimentation is needed to optimize the
algorithm and minimize the number of neighbor searches
that need to be performed. Whenever a particle protection
is destroyed, it should be inserted back into the event queue
with te = t, p = ∞, ν = 0, so that it is protected again
right away.

The main AS steps in Algorithm 1 for DKMC simula-
tions are:

• Steps 2 and 3 may involve the processing of particle birth
processes, where a particle of a given specie is introduced
into the system to model external fluxes. These are typi-
cally assumed to occur as a Poisson process and therefore
the time to the next birth is simply an exponentially dis-
tributed number, with the total birth rate given as the sum
of the birth rates for each of the species. The birth process
may be spatially homogeneous or the rate may depend on
the cell in which the birth occurs. The newborn particles
are inserted into the queue with p = 0, ν = −1.

• Step 6 consists of sampling ri from c1 and typically also
rebuilding Pi as in step 9a. For ν > 0, a particle decay
reaction may be processed, i.e., particle i may disappear
to produce zero, one or two “product” particles, which
are inserted into the queue with p = 0, ν = −1.

• Step 8 consists of sampling positions ri and rj from the
appropriate distribution:

– If the event is the decay of i or j, then c
(D)
2 and c

(CM)
2

are sampled, and then the decay reaction is processed.
– If the event is the collision of i and j, then c

(CM)
2 and

J
(D)
2 are sampled, and the appropriate reaction (e.g.,

annihilation, coalescence, chemical reaction, etc.) is
processed. This may destroy i and/or j and/or create
new particles to be inserted into the queue (with p =
0, ν = −1).

– If the event is the dissolution of the pair ij, then ei-
ther c

(CM)
2 and J

(D)
2 , or c

(D)
2 and J

(CM)
2 are sampled,

particle j is inserted back into the queue with p = 0,
ν = 0, and Pi is updated as in step 9a (this may pro-
tect the particles i and j as a pair again).

• Step 9a is the primary type of event in step 9 and con-
sists of updating Pi. The processing of such “virtual”
collisions with Pi consists of searching for the nearest
protection region Pj or Pjk among the neighbors of par-
ticle i (either using LLCs or NNLs). Particle i is then
protected against that nearest neighbor. If this makes Pi

too small then particle j or pair jk is propagated to time
t and Pj or Pjk destroyed. Finally, Pi, Pij or Pik is
constructed again, depending on the exact local geome-
try and the chosen rules for single versus pair protection.

• Step 10 consists of sampling times from the appropriate
distributions:

– In step 10a J1 is sampled.
– In step 10b an exponentially distributed time is gener-

ated based on the decay rates for the specie of particle
i.

– In step 10c J2 is sampled, as well as a decay time for
each of the two particles, and the smallest of the three
is selected.

3.4 Direct Simulation Monte Carlo

We have recently developed a novel AED algorithm
for simulating hydrodynamics at the molecular level via
DSMC, which is a method for simulating hydrodynamic
transport in a rare gas (that is, for solving the Boltzmann
equation). It can also be viewed as an approximation to
molecular dynamics in cases when the internal structure of
the fluid, including the true equation of state, is not impor-
tant. In particular, this is the case when simulating a sol-
vent in applications such as the simulation of large polymer
chains in solution. The exact trajectories of the solvent par-
ticles do not really matter, and what really matters are the
(long time and long range) hydrodynamic interactions that
arise because of local energy and momentum exchange (vis-
cosity) and conservation (Navier-Stokes equations). Any
method that simulates the correct momentum transfer local-
ized at a sufficiently small scale is a good replacement for
full-scale MD, and can lead to great computational savings
when a large number of solvent molecules needs to be sim-
ulated.

DSMC [1] achieves local momentum exchange and con-
servation by performing a certain number of stochastic col-
lisions between randomly chosen pairs of particles that are

7



inside the same cell. The collision rate inside a cell con-
taining NL particles is proportional to NL(NL − 1) with a
pre-factor that can be based on theory or fitted to mimic that
of the full MD simulation. For gas flows, the probability of
choosing a particular pair of particles is proportional to the
relative velocity, and typically a rejection technique (null-
method technique) is used when choosing pairs. Specifi-
cally, the collision rate is made proportional to the maxi-
mal possible relative velocity vmax

rel , and a randomly chosen

pair ij is rejected or accepted with probability vrel
ij /vmax

rel .
A pair rejection involves a small calculation and a random
number generation and is thus rather inexpensive, as long as
the acceptance probability is not too small, which can typ-
ically easily be achieved by a judicious (but still rigorous)
choice for vmax

rel .
Traditionally DSMC is performed using a time-driven ap-

proach: The particles are first propagated ballistically by a
certain time step ∆t and then sorted into cells accordingly,
and then an appropriate number of stochastic collisions are
carried out. Typically only a fraction (10-25%) of the parti-
cles actually undergo a collision, and the rest of the particles
are propagated needlessly. Furthermore, the existence of a
finite step leads to errors of order ∆t2, in addition to the
errors inherent in DSMC that are of order ∆x2, where ∆x
is the size of the cells. Therefore, ∆t must be small enough
so that particles move only a fraction of the cell size during
one step.

Our event-driven approach, on the other hand, explicitly
predicts and process cell transfers, just as in the MD al-
gorithm. Particles positions are thus only updated when
needed, and there is no time step error. The DSMC particles
are represented as a non-interacting specie δ, Iδδ = F , so
that the MD algorithm does not predict binary collisions for
the DSMC particles. Instead, stochastic binary collisions
are added as an external Poisson event of the appropriate
rate. One approach is to maintain a global time-of-next-
DSMC-collision tsc to determine when a stochastic colli-
sion is attempted. The rate of DSMC collisions is chosen
according to the cell with maximal occupancy Nmax

L , and
a randomly chosen cell of occupancy NL is accepted with
probability NL(NL − 1)/

[

Nmax
L (Nmax

L − 1)
]

.
Since the DSMC fluid is perfectly compressible, the max-

imal cell occupancy can be quite high for very large sys-
tems, and this leads to decreasing acceptance probability as
the size of the system increases. One can avoid cell rejec-
tions by using an asynchronous approach. Each cell can
store its own time-of-next-DSMC-collision, which is up-
dated whenever the cell occupancy changes. A separate
event-queue is used to order these cell event times. The top
of this cell event queue is used as the time of the next “ex-
ternal” event. Other possibilities exist, as commonly used
in traditional KMC simulations [12]. For example, the cells
could be grouped in lists based on their occupancy and then

an occupancy chosen first (with the appropriate weight), fol-
lowed by selection of a cell with that particular occupancy.

Most of the AS steps in Algorithm 1 for DSMC are
shared with MD. The different steps are associated with the
processing of stochastic collisions:

• In Step 2 tex is the time of the the next DSMC colli-
sion. If a rejection-free technique is used the cell at the
top of the cell event queue is chosen, otherwise, a cell is
selected randomly and accepted or rejected based on its
occupancy. If the cell is rejected, tex ←∞.

• In Step 3 a pair of particles i and j is selected from the
previously-chosen cell, and accepted or rejected for col-
lision based on the relative velocity. If accepted, momen-
tum and energy are stochastically exchanged among the
particles and they are moved to the top of the event queue
with te = t, p = 0, and ν = 1.

We have validated that the event-driven algorithm pro-
duces the same results as the time-driven one by comparing
against published DSMC results for plane Poiseuille flow of
a rare gas.

3.4.1 Combined MD-DSMC

While an event-driven DSMC algorithm has some advan-
tages over a time-driven approach, the cost of the increased
algorithmic complexity outweighs the benefits. However,
the AED variant of DSMC is very similar to AED hard-
sphere MD, and therefore it is relatively simple to combine
DSMC with MD in an event-driven framework. This en-
ables the simulation of systems such as colloids or hard-
sphere bead-chain polymers [18] in solution, where the so-
lute particles are treated using MD, and the less-important
solvent particles are treated approximately using DSMC.
The solvent-solute interaction is still treated with MD. Sim-
ilar studies have already been carried out using time-driven
MD for the solute particles and a simplified variant of
DSMC that approximates the solute particles as point parti-
cles and employs multi-particle stochastic collisions [6].

We have implemented such a combined algorithm, and
will describe the algorithm in detail and report validation
results in future publications. The implementation is almost
identical to classical hard-sphere MD, with the addition of a
new DSMC specie δ for which Iδδ = F . That is, the DSMC
“hard spheres” freely interpentrate each other, but collide
as usual with other species. The algorithm is much more
efficient than pure MD, however, it is still not as efficient
as pure DSMC since for each DSMC particle the nearby
cells need to be searched in Step 10c to make sure they do
not contain any solute particles (recall that cell bitmasks are
used to efficiently implement this). In cases when most of
the cells contain only DSMC particles, this can introduce
significant overheads.

8



In our implementation we use the last bit (the Nbits bit)
of the cell bitmask to mark those cells that neighbor cells
that contain non-DSMC particles. DSMC particles outside
the marked region are treated more efficiently, without any
neighbor searches, while the DSMC and MD particles in-
side the marked region are treated as in MD (with the ad-
dition of stochastic collisions among DSMC particles). In
cases when the solute particles are much larger than the
solvent particles, NNLs are used with a special technique
called bounded sphere-complexes [3] to handle neighbor
searches for the large particles. Whenever DSMC particles
transfer from a non-marked cell to a marked cell their neigh-
borhood region and NNL is constructed, similarly, when
they transfer from a marked to a non-marked cell their NNL
is destroyed.

4 Discussion

In this section we focus on some of the difficulties in de-
ploying AED algorithms in the simulation of realistic sys-
tems as needed in today’s computational science. The best-
known difficulty is the parallelization of AED algorithms
[5], which we do not discuss here due to space limitations.
Instead, we will focus on the difficulties that make even se-
rial simulations challenging. It is important to point out
that for problems involving hard particles, that is, particles
interacting with discontinuous potentials, event-driven ap-
proaches are the only exact algorithm. Time-driven algo-
rithms always make an error due to the finite size of the
time step ∆t, and typically ∆t must be much smaller than
the actual time step between events in order to guarantee
that no events are missed.

The most involved aspect of implementing an AED algo-
rithm for a particular problem is the need for analytic so-
lutions for various one- and two-body propagators or event
predictions. For MD, the difficulty is with predicting the
time of collision of two moving hard particles. For hard
spheres, this can be done analytically relatively easily (but
numerical care must be taken [8]). When orientational
degrees of freedom are involved however, a time stepped
ODE-like methodology is needed since analytical solutions
are difficult to obtain [3]. This makes collision prediction
much more difficult to implement in a numerically-stable
way and also much more costly. In DKMC, there is a need
to analytically construct the probability distributions c1, c2,
J1 and J2, or at least to find a way to efficiently sample from
them. These distributions are Green’s functions for a time-
dependent diffusion equation inside regions such as spheres,
cubes, spherical shells, intersection of two spheres, or inter-
section of a cone and a sphere. For time-independent prob-
lems such solutions can be constructed more easily, but for
time-dependent problems even the simple diffusion equa-
tion poses difficulties (analytical solutions are typically infi-

nite series of special functions in the Laplace domain). Dif-
ferent boundary conditions such as reactive surfaces require
even more analytical solutions and tailor-made propagators.
The handling of more complex equations of motion such as
the full Langevin equation (which combines convection and
diffusion) has not even been attempted yet.

This makes designing a more general-purpose AED pro-
gram virtually impossible. This is to be constructed to, for
example, time-driven MD where different interaction poten-
tials can used with the same time integrator. In general, time
stepped approaches are the only known way to solve prob-
lems for which analytical solutions do not exist, including
two-body problems in the case of MD or DKMC. The al-
gorithm used in Ref. [3] to predict the time of collision for
pairs of hard ellipsoids combines a time-driven approach
with the event-driven one. It does this without trying to
combine them in an intelligent way to avoid wasted com-
putation (such as repeated trial updates of the position of
a given particle as each of its neighbors is processed). We
believe that such an intelligent combination will not only
provide a more general AED algorithm, but also make the
algorithm more robust numerically.

More generally, combining event-driven with time-driven
algorithms is an important challenge. When the time step is
large enough so that many events occur within one time step
one can use the event-driven algorithm in-between the up-
dates in the time-driven approach [8, 17, 20]. When the time
step is small, however, events occur sparingly only in some
of the time steps, and a different methodology is needed.
For example, a new kind of time step event can be added
that indicates propagation over a small time step. The es-
sential advantage of event-driven algorithms is that they au-
tomatically adjust to the time scale at hand, that is, that they
take the appropriate time step without any additional input.
The real challenge is to use time stepping in an event-driven
framework in which the time step is adjusted accordingly,
while still processing events correctly.

Another unexplored or barely explored area is that of us-
ing controlled approximations in AED algorithms. Approx-
imate event-driven algorithms have been used to handle a
variety of processes, however, these are often uncontrolled
approximations. The approximate algorithms may repro-
duce the required (macroscopic) physical averages just as
well as the exact algorithm would, however, controls are
necessary to validate the simulations. Examples of approx-
imations that may be useful include ignoring unlikely in-
teractions between certain particles, approximate solutions
instead of exact propagators (such as expansions around the
mean behavior), etc.

Almost all of the AED particle algorithms to date have
focused on single-particle or pair events. This is possible
to do for hard particles because exact triple collisions are
a zero-measure event. However, for more realistic models,

9



or when approximations are made, events involving clus-
ters of particles may need to be considered. For example, a
cluster of particles may evolve as a strongly-coupled (e.g.,
chemically bonded) unit while interacting with other (e.g.,
freely diffusing) single particles or clusters. An additional
assumption in most AED particle algorithms is that events
affect only one or two particles, so that the event predictions
of the majority of particles remain valid after processing an
event. In some situations, however, there may be global
degrees of freedom and associated events that affect all of
the particles. For example, in MD there may be a macro-
scopic strain rate that affects all of the particles, since all
of the event predictions are invalidated when the strain rate
changes. And in principle the strain rate is coupled back
to each of the particles, so that every particle collision also
changes the strain rate (albeit by a small amount). In time-
driven MD this is no problem since the evolution of the sys-
tem is synchronous and the strain rate evolves together with
the particles, however, in event-driven MD such coupling
between all of the particles makes it impossible to schedule
events efficiently.

Finally, multi-algorithm and/or multi-scale combinations
including an AED component have not been explored to
our knowledge. As an example, consider the simulation
of nano-structures during epitaxial film growth [14]. At
the smallest scales, time-driven (first-principles or classi-
cal) MD is needed in order to study the attachment, detach-
ment, or hopping of individual particles or clusters. Once
the rates for these processes are known, lattice-based KMC
can be used to evolve the structure more quickly without
simulating the detailed (vibrational) motion of each atom.
At larger scales, the continuum-based DKMC algorithm we
described can be used to propagate atoms over large dis-
tances in lower-density regions (across flat parts of the sur-
face). Finally, a time-driven continuum diffusion can be
used to model processes at macroscopic length scales. Such
ambitious investigations are a challenge for the future.

References

[1] F. J. Alexander and A. L. Garcia. The Direct Simulation
Monte Carlo Method. Computers in Physics, 11(6):588–
593, 1997.

[2] A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger,
R. Connelly, S. Torquato, and P. M. Chaikin. Improving the
Density of Jammed Disordered Packings using Ellipsoids.
Science, 303:990–993, 2004.

[3] A. Donev, S. Torquato, and F. H. Stillinger. Neighbor List
Collision-Driven Molecular Dynamics Simulation for Non-
spherical Particles: I. Algorithmic Details II. Applications
to Ellipses and Ellipsoids. J. Comp. Phys., 202(2):737–764,
765–793, 2005.

[4] J. Elf, A. Doncic, and M. Ehrenberg. Mesoscopic reaction-
diffusion in intracellular signaling. In S. M. Bezrukov,

H. Frauenfelder, and F. Moss, editors, Fluctuations and
Noise in Biological, Biophysical, and Biomedical Systems,
pages 114–124, 2003.

[5] R. M. Fujimoto. Parallel and Distributed Simulation Sys-
tems. John Wiley & Sons, 2000.

[6] J. Harting, M. Hecht, H. J. Herrmann, and S. McNamara.
Computer simulation of particle suspensions. Multifield
Problems in Solid and Fluid Mechanis, Lecture Notes in
Applied and Computational Mechanics 28, Springer, 2006.
cond-mat/0606167.

[7] H. J. Herrmann and M. Müller. Simulations of granular ma-
terials on different scales. Comp. Phys. Comm., 127:120–
125, 2000.

[8] Y. A. Houndonougbo, B. B. Laird, and B. J. Leimkuh-
ler. Molecular dynamics algorithms for mixed hard-
core/continuous potentials. Mol. Phys., 98:309–316, 1999.

[9] F. Jamalyaria, R. Rohlfs, and R. Schwartz. Queue-based
method for efficient simulation of biological self-assembly
systems. J. Comput. Phys., 204(1):100–120, 2005.

[10] H. Karimabadi, J. Driscoll, Y. Omelchenko, and N. Omidi.
A new asynchronous methodology for modeling of physical
systems: breaking the curse of courant condition. J. Comp.
Phys., 205(2):755–775, 2005.

[11] B. Mirtich. Timewarp rigid body simulation. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 193–200,
New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[12] M. A. Novotny. A Tutorial on Advanced Dynamic Monte
Carlo Methods for Systems with Discrete State Spaces, vol-
ume IX of Annual Reviews of Computational Physics, pages
153–210. World Scientific, Singapore, 2001.

[13] T. Oppelstrup, V. V. Bulatov, G. H. Gilmer, M. H. Ka-
los, and B. Sadigh. First-passage monte carlo algorithm:
Diffusion without all the hops. Physical Review Letters,
97(23):230602, 2006.

[14] J. S. Reese, S. Raimondeau, and D. G. Vlachos. Monte Carlo
Algorithms for Complex Surface Reaction Mechanisms: Ef-
ficiency and Accuracy. J. Comp. Phys., 173(1):302–321,
2001.

[15] A. Scala, T. Voigtmann, and C. D. Michele. Event-Driven
Brownian Dynamics for Hard Spheres. ArXiv Condensed
Matter e-prints, July 2006.

[16] K. E. Schmidt, P. Niyaz, A. Vaught, and M. A. Lee. Green’s
function Monte Carlo method with exact imaginary-time
propagation. Phys. Rev. E, 71(1):016707, 2005.

[17] H. Sigurgeirsson, A. Stuart, and W.-L. Wan. Algorithms for
Particle-Field Simulations with Collisions. J. Comp. Phys.,
172:766–807, 2001.

[18] S. W. Smith, C. K. Hall, and B. D. Freeman. Molecular
Dynamics for Polymeric Fluids Using Discontinuous Poten-
tials. J. Comp. Phys., 134(1):16–30, 1997.

[19] J. S. van Zon and P. R. ten Wolde. Green’s-function re-
action dynamics: A particle-based approach for simulating
biochemical networks in time and space. The Journal of
Chemical Physics, 123(23):234910, 2005.

[20] R. S. Wedemann, V. C. Barbosa, and R. Donangelo. De-
feasible time-stepping. Parallel Comput., 25(4):461–489,
1999.

10


