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The complexity of biological, social and engineering networks makes it desirable to find natural
partitions into communities that can act as simplified descriptions and provide insight into the
structure and function of the overall system. Although community detection methods abound,
there is a lack of consensus on how to quantify and rank the quality of partitions. We show here
that the quality of a partition can be measured in terms of its stability, defined in terms of the
clustered autocovariance of a Markov process taking place on the graph. Because the stability has
an intrinsic dependence on time scales of the graph, it allows us to compare and rank partitions at
each time and also to establish the time spans over which partitions are optimal. Hence the Markov
time acts effectively as an intrinsic resolution parameter that establishes a hierarchy of increasingly
coarser clusterings. Within our framework we can then provide a unifying view of several standard
partitioning measures: modularity and normalized cut size can be interpreted as one-step time
measures, whereas Fiedler’s spectral clustering emerges at long times. We apply our method to
characterize the relevance and persistence of partitions over time for constructive and real networks,
including hierarchical graphs and social networks. We also obtain reduced descriptions for atomic
level protein structures over different time scales.

I. INTRODUCTION

In recent years, there has been an explosion of interest
in the analysis of networks as models of complex systems.
The literature is extensive spanning areas as diverse as
gene regulation, protein interactions and metabolic path-
ways, neural science, social networks or engineering sys-
tems such as transportation networks and the internet,
to name but a few [1, 2]. The tools for network analy-
sis are firmly grounded on results in graph theory, with
an influx of concepts from statistical physics, dynamical
systems and stochastic processes [3]. Due to the large-
scale, complex nature of many systems under study, an
appealing idea is to obtain relevant partitions (or clus-
terings) of the network that can reveal the underlying
structure of the system and hence insight into its func-
tion. These partitions could potentially lead to reduced,
more manageable representations of the original system.

The topic of graph community detection has a long
history and multiple methods and heuristics have been
proposed to partition graphs into communities or clus-
ters. (See for instance [4] and references therein for a re-
cent survey.) However, the extensive list of partitioning
methods comes with a parallel lack of theory or consen-
sus on measures to quantify the goodness of a commu-
nity structure. The simplest such measure is certainly
the cut size, i.e., the sum of the weights of edges that lie
at the boundaries of different communities. As a general
rule, good community structures should have small cut
size implying that the communities are weakly connected.
Unfortunately, this simple intuitive notion has negligible
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applicability since the partition with minimum cut size
is often trivial. Therefore, a variety of measures have
been proposed including, without claim of exhaustivity,
normalized cut [5], (α, ε)-clustering [6], modularity [7, 8]
and variants and extensions of modularity [9, 10]. Each of
these methods has distinct features and has been shown
to produce reasonable community structures for differ-
ent examples. In particular, modularity does not require
that the number of communities be specified in advance,
unlike most of the other partitioning methods. However,
it has been recently shown that optimizing modularity
can over-partition or under-partition the network, failing
to find the most natural community structure [11]. To
compensate for this, recent methods [10, 12, 13], have in-
cluded an ad hoc resolution parameter that can be tuned
to bias towards small or large communities. The intro-
duction of these resolution parameters highlights the fact
that one would expect that any given graph would be de-
scribed by different natural community structures (finer
or coarser) under different conditions.

Our work introduces a quality measure that has the
intrinsic flexibility to find which clusterings are relevant
at different time scales. This is achieved by establishing
a link between the quality of the partition and a stochas-
tic process taking place on the clustered graph. We use
the well-known relationship between graphs and Markov
chains: with any unweighted graph we can associate a
random walk in which the probability of leaving a vertex
is uniformly distributed among the outgoing edges. This
Markov viewpoint provides a dynamical interpretation
of communities. In particular, natural communities at
a given time scale will correspond to persistent dynam-
ical basins, that is, sets of states from which escape is
unlikely within the given time scale. This can be estab-
lished quantitatively through the autocovariance of the
clustered Markov process, a measure that defines the per-
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sistence of a cluster in time. In essence, one can think of
the time scale as an intrinsic resolution parameter for the
clustering: over short time scales, many clusters should
be coherent; on the other hand, the expectation is that
there will be few persistent clusters under the action of
the Markov chain if one waits for a long time.

An important feature of our approach is that it pro-
vides a framework that unifies several heuristic measures.
It turns out that most quality measures introduced in
the literature have a natural Markov probabilistic in-
terpretation. We will show below that modularity and
normalized min-cut are related to the autocovariance on
paths of length one (i.e., at time t = 1), while Fiedler’s
spectral method corresponds to the limit of long paths
(i.e, time t = ∞). In contrast, our measure considers
paths of all lengths and provides an evaluation of the
quality of a clustering at all times, including fractional
times (0 < t < 1) for which we obtain clusterings finer
than those obtained by modularity optimization. Our
measure is thus not affected by the resolution limit of
modularity [13].

The rest of the paper proceeds by introducing in sim-
ple terms the definition of the stability of the clustering
r(t), which corresponds to the autocovariance of the par-
tition under a Markov process and provides a measure
of the quality of any partition over time. As part of our
derivation, we show that r(1) is optimized by modularity
while at long time scales, r(∞) is typically optimal for
the classic 2-way spectral clustering related to the Fiedler
vector. For the intermediate time scales, our measure can
be used to rank the different partitions and, in doing so,
establish a hierarchical, time-dependent set of partitions
that are valid over different time spans. Our measure
also allows us to compare the community structure ob-
tained by different algorithms over different timescales.
In addition, we show how the stability at fractional times,
r(0 < t < 1), leads to finer partitions than those pro-
duced by modularity maximization. Therefore the sta-
bility r(t) provides a unifying framework for the under-
standing of different and seemingly unrelated clustering
heuristics in relation to the characteristic Markov time
over which a given clustering is valid. We exemplify the
applications of the method with networks drawn from dif-
ferent fields to showcase the generality of the approach.

II. METHODS

A. Autocovariance and stability of a graph
partition

Consider an undirected, connected graph with N ver-
tices and E edges and assume that the graph is non-
bipartite. For simplicity in the derivation below, we will
assume that the graph is unweighted, although all our
results apply equally to weighted graphs. The topology
of the graph is given by the N ×N adjacency matrix A,
a symmetric 0-1 matrix with a 1 if two vertices are con-

nected and 0 otherwise. The number of edges of each
vertex, or degree, di can be compiled into the vector
d = A1, where 1 is the vector of ones. We will also
use the diagonal matrix of degrees: D = diag(d).

A random walk on any such graph defines an associ-
ated Markov chain in which the probability of leaving a
vertex is split uniformly among the outgoing edges, with
a transition probability 1/di for each edge:

pt+1 = pt
[
D−1A

]
≡ ptM, (1)

where pt is the (normalized) probability vector and M is
the transition matrix. Under these assumptions, we have
an ergodic and reversible Markov chain with stationary
distribution π = dT /

∑
i di = dT /2E. We will also use

below the diagonal matrix Π = diag(π).
Consider now a given partition of the graph in c com-

munities. This (hard) clustering can be encoded in an
N × c indicator matrix H, a 0-1 matrix that records
which vertex belongs to which community. Each row
of H is all zeros except for a 1 indicating the cluster
to which the vertex belongs. Let us now observe the
Markov process (1) under the prism of the given parti-
tion by assigning a different real value αi to the vertices
of each of the c clusters. The observed signal is then
a stationary, not necessarily Markovian, random vari-
able (Xt)t∈N which consists of a sequence of αi. The
expectation for a good partition of the graph over a
given time scale is that the state is likely to remain
within the starting cluster for such a time span, as com-
pared with that event occurring at random. This can be
quantified through the autocovariance of the observable
cov[Xt, Xt+τ ] = E[XtXt+τ ]−E[Xt]2, where E denotes ex-
pectation. If the inter-community connections are weak,
the values of Xt and Xt+τ will be correlated for longer
times. How fast the autocovariance decays as a function
of the lag τ is therefore an indicator of the quality of
the clustering over the corresponding Markov time scale.
This is the main idea underpinning our measure.

The covariance of Xt can be rewritten as
cov[Xt, Xt+τ ] = αTRτα, where α is the vector of
labels of the c communities and the matrix Rt is the
clustered autocovariance matrix of the graph:

Rt = HT
(
ΠM t − πTπ

)
H. (2)

Note that the matrix Rt depends only on properties of
the graph and clustering. It summarizes the t-step depen-
dence of the transfer probabilities between clusters: each
element (Rt)ij corresponds to the probability of start-
ing in a cluster i and being in another cluster j after t
steps minus the probability that two independent random
walkers are in i and j, evaluated at stationarity.

As stated above, a good partition over a given time
scale should imply a high likelihood of remaining within
the starting community. In terms of the clustered au-
tocovariance matrix, the diagonal elements (Rt)ii, which
measure the probability of a random path of length t to
start and end in the same community, should be larger
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than the off-diagonal ones. This leads to our definition
of the stability of the clustering :

r(t;H) = min
0≤s≤t

c∑
i=1

(Rs)ii = min
0≤s≤t

trace [Rs] . (3)

A good clustering over time t will have large stability,
with a large trace of Rt over such a time span. Note that
our definition involves the minimum value of the trace in
a given interval, i.e., the stability of the partition is large
only if the values for all times up to t are large. In this
way, we assign low stability to partitions where there is
a high probability of leaving the community and coming
back to it later, as in the case of almost bipartite graphs.

The stability (3) is the fundamental tool we propose to
assess the quality of different clusterings over time. For
each candidate clustering, we can compute the stability
at all times and rank the possible partitions. Clearly, cer-
tain partitions might only be optimal in particular time
windows and different partitions will be optimal at differ-
ent times. For each Markov time t, we seek the partition
with the largest stability to obtain the stability curve of
the graph: r(t) = maxH r(t;H). This curve establishes a
time hierarchy of partitions, from finer to coarser as time
grows, as shown in Figure 1 for a social network. This
underscores the idea that partitions are better or worse
depending on the time of interest, and the concept of the
Markov time as an intrinsic resolution parameter that
establishes when a partition is good. In this sense, the
most relevant partitions will be optimal over long time
windows, because they serve as good representations over
extended time scales of the system.

B. Relationship of the stability with modularity,
cut, normalized cut and spectral partitioning

An important feature of the stability (3) is that it en-
compasses several of the criteria for clustering in the liter-
ature and allows us to interpret those heuristics in terms
of the relevant Markov time scales of the graph. To ex-
plore this, we study the autocovariance Rt and the sta-
bility r(t) in different limits.

First, consider short times. At time t = 0, the partition
with the largest stability is the finest possible clustering.
This follows from the definition r(0) = 1−‖πH‖22, which
becomes maximal when each vertex is in its own cluster
as follows from elementary inequalities.

At time t = 1, we recover modularity, a popular mea-
sure for community detection [7]. It follows from the defi-
nition that modularity is equal to the trace of R1, the au-
tocovariance matrix at time t = 1. Therefore, maximiz-
ing r(1) is equivalent to modularity optimization. (See
also [14] for an alternative, non-dynamical take on this
issue.) The stability is also related to other measures in
the literature. Consider the cut size (Cut), defined as
the sum of the number of inter-community edges divided
by the total number of edges of the graph. It is easy to

FIG. 1: (A) Largest connected component of a graph of scien-
tific collaborations in network science [14]. The vertices corre-
spond to N = 379 researchers indexed by the 21-way partition
obtained by maximizing the stability at t = 1 (or equivalently,
modularity). A list of names for this graph and groupings is
available in the Supplementary Information. (B) Stability
curve obtained with the divisive KVV algorithm (top) and
the corresponding dendrogram of the hierarchy of partitions
(bottom). Note the simplicity of the dendrogram, which is not
a binary tree, as compared with the many branching points
obtained by standard binary partition methods. Only two
clusterings are long-lived: the two-way clustering (trivially)
and the five-way partition represented by areas shaded in dif-
ferent colors in (A).

see that Cut = r(0)− r(1). Hence modularity is equal to
1−Cut− ‖πH‖22, and maximizing modularity is equiva-
lent to minimizing Cut + ‖πH‖22. This is the reason why
modularity tends to produce balanced partitions: mini-
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mizing Cut favors few clusters, possibly of very unequal
sizes, while minimizing ‖πH‖2 tends to favor many clus-
ters of equal size. An alternative measure to modularity
is the so-called Normalized Cut size (NCut) [5]. For the
case of two communities, NCut is the number of inter-
community edges multiplied by the sum of the inverse of
the number of edges in each community, which can be
shown to equal NCut = ρ(0) − ρ(1), where ρ(t) is given
by the same expression as the stability r(t) replacing co-
variances by correlations. Hence NCut is also a one-step
measure.

The discussion above shows that modularity, Cut and
NCut are based on the one-step behavior of the Markov
process. On the other hand, our stability measure takes
into account the dependence of the autocovariance at all
times. In fact, the behavior of r(t) in the long time
limit t → ∞ establishes a link with spectral clustering
methods, the other standard toolbox for graph partition-
ing. Spectral methods are generally based on the Fiedler
eigenvector, i.e., the eigenvector associated with the sec-
ond smallest eigenvalue of the Laplacian matrix L =
D−A, or of the normalized Laplacian L = D−1/2LD−1/2.
In Fiedler’s original work [15, 16], the graph was parti-
tioned into two subgraphs according to the sign of the
components of the Fiedler vector. More recently, graph
partitioning based on the normalized Fiedler vector has
been proposed [17] and shown to be a heuristic for the
optimal NCut 2-way clustering [5].

The analysis of our measure shows that spectral clus-
tering is not just a heuristic but an exact method to
find the most stable partitions at long time scales. This
follows from the spectral decomposition of the normal-
ized Laplacian L, which is trivially related to that of
M = D1/2MD−1/2 =

∑N
i=1 λiuiu

T
i . Here the eigenval-

ues λi are ranked in order of decreasing magnitude and
the corresponding eigenvectors ui are orthonormal. In
particular, λ1 = 1 and u1 = (1/

√
2E)D1/21 leading to

the following asymptotic behavior:

trace[Rt] =
N∑
i=2

λti
2E
‖HTD1/2ui‖2

t→∞−−−→ λt2
2E
‖HTD1/2u2‖2.

(4)
If λ2 is positive, u2 is the normalized Fiedler eigenvec-
tor and the clustering with maximal stability at long
times typically corresponds to the Fiedler partition. To
see this, take initially the finest possible partition with
each node in a cluster by itself and cluster together ver-
tices i and j. This induces a variation in (4) given by
(λt2/E)

√
didj u2,iu2,j , which is only positive if the com-

ponents of the normalized Fiedler vector for nodes i and
j have the same sign. Applied recursively, this leads to
the result that the partition with the largest stability at
long times is typically the 2-way clustering according to
the sign of the entries of the Fiedler vector.

When λ2 is negative, u2 is not the Fiedler eigenvec-
tor but rather the largest eigenvalue of L, i.e., the most
negative eigenvector of M. In this case, the dominant
term in (4), and hence the stability, becomes negative

for all partitions except for the coarsest clustering with
all nodes in one community and H = 1, for which the
stability is zero at all times, following from (4) and or-
thogonality. We thus conclude that, at large times, the
clustering with maximal stability is either a one-way or
two-way partition. In the latter case, it is given by the
normalized Fiedler vector.

The overall picture emanating from our analysis is that
the partition with highest stability evolves from the finest
possible (each vertex by itself) at t = 0, through the op-
timal modularity clustering at t = 1, onto a sequence
of coarser partitions, the last of which is typically the
two-way spectral clustering (or the one-way trivial clus-
tering) as t→∞. Although the sequence of partitions is
not necessarily always increasingly coarser at increasing
times (we may have incomparable clusterings that are
optimal at different times), we do expect that the clus-
terings will roughly contain fewer and fewer clusters as
the Markov time grows.

III. APPLICATIONS AND EXAMPLES

We now show the applicability of the method by an-
alyzing three examples drawn from social interactions,
hierarchical scale-free graphs and protein structural net-
works. Rather than being exhaustive, our goal is to high-
light through each example some of the wider features of
our approach.

A. Example 1 – Time hierarchy of partitions and
comparison of clustering algorithms

Our first example deals with the graph of collabora-
tions between researchers in network science shown in
Figure 1A [14]. Community structures are relevant for
social networks, where the identification of groups of peo-
ple with strong ties can help unravel underlying patterns
of interdependence [3]. In Figure 1B we show the time
hierarchy of partitions associated with the stability curve
of the network. Our measure (3) is used to rank parti-
tions efficiently, since the stability of a given clustering
r(t;H) is directly computable in O(cEt), or estimated in
O(Kt) with accuracyO(c/

√
K) throughK random walks

of length t. In order to obtain the stability curve, one
needs to maximize the stability over all partitions. Given
that modularity optimization is provably NP-hard [18],
it is likely that no efficient algorithm exists for the opti-
mization of stability for arbitrary graphs. However, for
all practical applications, we can still obtain sequences
of partitions through the use of a number of partition-
ing algorithms with different heuristic strategies, such as
aggregative (i.e., unifying clusters from the finest cluster-
ing) or divisive (i.e., splitting clusters from the coarsest
clustering). Figure 1B is the result of the application of
Kannan, Vempala and Vetta’s (KVV) conductance spec-
tral algorithm [6] under a divisive strategy to produce
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FIG. 2: A comparison of the stability curve of the partitions
obtained through a divisive strategy using four clustering al-
gorithms (Shi-Malik [5], KVV [6], Newman [14] and Newman-
Girvan [7]) on the network of scientific collaborations pictured
in Fig. 1(B)

a sequence of partitions, which are then ranked accord-
ing to their stability to estimate the stability curve r(t).
This curve is then translated into a non-binary dendro-
gram representing the sequence of community structures
with maximal stability as a function of time. The dendro-
gram has the advantage of being relatively simple, with
fewer branching points compared with the binary trees
produced by most hierarchical community detection algo-
rithms. In this case, the time hierarchy of partitions indi-
cates that the modularity-optimal clustering into 21 com-
munities is short-lived whereas a partition into 5 commu-
nities persists over a long time window. This suggests the
relevance of this coarser meta-community structure as in-
dicative of the likelihood of information to flow within the
five subgroups of researchers.

Our stability measure can also be used to rank the
sequences of partitions obtained by different algorithms
and strategies. Figure 2 presents the comparison of the
estimated stability curves from four algorithms chosen
for their simplicity and popularity and because they rep-
resent different overall methodologies. In addition to the
KVV conductance method introduced above [6], we have
also examined Shi-Malik’s recursive spectral method [5],
Newman’s spectral method to optimize modularity [14]
and the Newman-Girvan betweenness algorithm [7]. In
all cases, we use a divisive strategy to produce a sequence
of increasingly finer k-way partitions and obtain an es-
timate of the stability curve r(t) by choosing the best
partition at each time. For details of the algorithms
see the Supplementary Information. Figure 2 shows that
Shi-Malik and KVV produce the partitions with highest
stability at all shown times (alternatively better in dif-
ferent time windows), followed closely by the Newman-
Girvan algorithm and Newman’s spectral algorithm. At
higher times (up to t = 1000 at least), the KVV method
slightly dominates Shi-Malik and Newman-Girvan algo-
rithms, while Newman’s clustering algorithm is worse by
a factor of two. These observations are no evidence of
superiority of one method over another, but an exam-
ple of how to compare and use the different partitioning

algorithms on a given example.

B. Example 2 – Beyond the resolution limit of
modularity: the small time limit of the continuous

process

Recently, it has been shown that modularity optimiza-
tion cannot produce partitions smaller than a certain
relative size. This effect, termed the resolution limit
of modularity, leads to partitions coarser then the ex-
pected ‘natural’ community structure [11]. So far, based
on the discrete-time stability (3), our analysis has shown
that at time t = 0, the most stable community struc-
ture corresponds to the trivial partition of each vertex
in a community, while the modularity-optimal commu-
nity structure corresponds to time t = 1. For t > 1,
the most stable community structures are coarser than
those found by modularity optimization. In order to ob-
tain finer community structures than modularity (i.e.,
beyond the resolution limit), we must consider the sta-
bility at times between zero and one. In fact, this regime
can be studied within our framework through the nat-
ural extension to the continuous-time version of Eq. (2)
obtained through substitution of M t by exp [(M − I)t],
where I is the identity matrix [19]. Keeping linear terms
in the small t expansion of the matrix exponential, we
get the following approximation of the stability for small
(continuous) times:

rc(t) ' (1− t) r(0) + t r(1), 0 ≤ t ≤ 1. (5)

Note that this linear interpolation recovers modularity
r(1) at t = 1 and the totally unclustered graph r(0) at
time t = 0. It also provides an interpretation in terms
of Markov time of the resolution parameter proposed by
Reichardt and Bornholdt [10] and is related to a heuristic
proposed by Arenas et al. [12] consisting of the addition
of weighted self-loops to the graph.

As an example, Figure 3 shows the stability curve for
times smaller than one of the partitions of a 125-vertex
hierarchical scale-free graph recently proposed by Ravasz
and Barabasi [20]. In this simple model, the natural clus-
tering is not found through modularity. Our method, on
the other hand, finds that the natural partitions into 25
and 5 clusters have long windows of stability while the
partition obtained by modularity at t = 1 is a transient
with no extended significance. See [21] for another dy-
namical analysis of the same graph.

C. Example 3: Structural graphs, model reduction
and time scales

Our final example shows an application of our frame-
work to analyze graphs of atomic level protein structures
and its relevance to model reduction of biophysical sys-
tems. Recently, new methods based on the explicit con-
sideration of graphs of constraints have been proposed
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FIG. 3: Stability curve of a hierarchical, scale-free graph with
N = 125 vertices proposed in [20] (shown in the inset) cal-
culated for times smaller and larger than one. Note that the
natural partitions in 5 and 25 communities have a long time
scale of stability, while the modularity-optimal clustering (at
t = 1) can be seen as a transient.

to simplify the complex dynamics of large biomolecules
such as proteins. The idea is to obtain a simplified, lower-
dimensional mechanical description of the movement of
the protein in terms of a few relatively rigid parts con-
nected by flexible elements [22, 23, 24, 25, 26, 27]. Be-
cause rigid parts are likely to form a tightly-knit network
of chemical bonds and chemical constraints, while being
loosely interconnected to each other, we expect that a
reasonable approximation to the constrained flexibility of
the protein will be given by the partition of the structural
graph of the protein with atoms as vertices and edges cor-
responding to bonds and chemical constraints [22].

Figure 4A shows the time hierarchy of partitions of
a full atom (N = 2085) structural graph of the pro-
tein Adenylate Kinase (AK) in its open configuration.
In this example, biophysical considerations indicate that
optimizing modularity over-partitions the graph—the 31
communities obtained at t = 1 split several rigid struc-
tural motifs such as β-sheets and α-helices. We use
the Shi-Malik divisive algorithm to estimate the stabil-
ity curve and obtain a hierarchy of coarser structures at
longer times. Some of the optimal partitions (notably
those into 18 and 4 communities) prevail over relatively
long time windows and contain significant biophysical
features. To make this more precise, we evaluate the rel-
ative variation in the intra-community positions of the
Cα carbons of two known functional configurations of
AK (open vs. closed) for all partitions obtained in our
study. Figure 4B shows the intra-community stretch-
ing for all partitions calculated as follows: calculate all
pair distances between atoms within each community in
both configurations of the protein and obtain ∆, the av-
erage square variation of those distances over all commu-
nities. If the communities are completely rigid, the pair
distances within communities will not change and ∆ = 0.
The maximum value ∆ = 37Å2 is the average square vari-
ation for all atoms in the protein (i.e, when we consider
all of them in one community). As the number of commu-

nities in the partition grows, one expects that ∆ will de-
crease, since the number of pair distances decreases. The
key is to find when the addition of a community does not
result in a significant decrease of ∆. This implies that the
new communities added are not significantly rigid. This
is observed in the plateaux in ∆ that follow the 4-way
and 18-way community structures and is consistent with
the extended time scales of prevalence for both partitions
in the stability curve. This indicates that the 4-way and
18-way community structures are a reasonable compro-
mise between simplicity and predictive power for rigidity.
We remark for this particular example that the ‘Markov
time’ is defined as an abstract entity, not to be assigned
an immediate link with a physical quantity. The rigorous
connection between the Markov time and the biophysical
time of protein motions is currently being pursued.

IV. DISCUSSION AND FUTURE WORK

In this work, we have introduced the stability (3) as
a quality measure of a graph partition. The stability of
a partition is defined in terms of the autocovariance of
a Markov process taking place on the clustered graph
and is explicitly dependent on the Markov time, an in-
trinsic time scale of the network. This allows us to rank
partitions and establish their relevance over each time
scale. Although Markov chains [28, 29, 30] and dynami-
cal behaviors based on oscillator dynamics [21, 31] have
been used in relation to community detection, previous
methods have not considered the definition of a quality
measure, nor have they introduced the concept of paths
of different lengths to evaluate the quality of partitions
across time scales.

The resulting sequence of partitions with maximum
stability as a function of time leads to a time hierarchy
of clusterings, from finer to coarser as the Markov time
grows. This hierarchy can be used to establish the most
relevant partitions over the significant time scales under-
lying a process. Hence, our method does not provide
a unique partition for the graph. Rather, we propose
that, obtaining the distinct partitions which are valid
over different time windows and selecting those partitions
that are relevant over extended time scales may be better
suited for many applications. In particular, if a network
has been obtained from an underlying dynamical process
with well defined time scales, our analysis can suggest re-
duced representations valid over time windows of interest
in the process. On the other hand, if the network under
study does not have an obvious temporal interpretation,
the Markov time acts effectively as an intrinsic resolution
parameter for the partitions.

Another important feature of the stability is that it
gives a unified interpretation in terms of time scales of
community detection methodologies that have been hith-
erto considered separately. We have shown that modular-
ity, cut and normalized cut can be understood in relation
to the stability at t = 1, while spectral clustering based
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FIG. 4: Analysis of the atomic-level structural graph of the protein Adenylate Kinase (AK) with N = 2085 vertices. (See the
Supplementary information for a detailed explanation on how this graph is obtained.) (A) The optimal stability curve for this
graph is estimated by the divisive Shi-Malik algorithm, where the dashed lines are the stability curves of the different partitions
and the solid curve is the maximum of all dashed curves at each Markov time. The 31-way clustering with optimal modularity
among the computed clusterings over-partitions the structure: it breaks β-sheets and α-helices, which should belong to the
same cluster. The 4-way and 18-way partitions have relatively long windows of stability with a good balance between over-
and under-partitioning (B) Evaluation of the validity of the partitions obtained through a comparison of two experimental
conformations of AK (open and closed). Each partition is obtained exclusively from the graph of the open configuration. The
partitions are then evaluated against the experimental conformational distortions to calculate the error obtained by assuming
rigidity of the predicted communities. Two plateaux are observed in the error: from 4 to 10 clusters and from 18 to 31
clusters. This indicates that the 4-way and 18-way partitions (which show persistence over long time windows in (A)) represent
a parsimonious compromise between rigidity prediction and a small number of clusters. (C) Some of the partitions in the
hierarchy of the system are represented. Note the structural communities (represented by adjacent regions of the same color)
appearing at different Markov time scales.

on the normalized Fiedler vector is linked to stability at
t =∞. In addition, stability is connected to the concept
of ‘anti-clustering’ and k-colourings [32, 33] based on the
existence of recurrence patterns in the time-dependence
of the trace of Rt. Although our stability measure (3) is
defined in the discrete time setting, there is an equiva-
lent continuous-time version of stability (also introduced
above). This continuous stability can be linked to previ-
ous numerical results where dynamic outcomes, such as
synchronization, have been used as heuristics for graph
partitioning [19]. The continuous stability can also be
exploited to analyze the regime beyond the resolution
limit of modularity to obtain partitions finer than those
obtained by modularity. In fact, one can show that pre-
viously proposed ad hoc multi-resolution measures [10]
can be interpreted in terms of a linearization of the con-
tinuous stability at small times.

Complex systems, from protein dynamics to metabolic
and social interactions to the internet, are often described
as networks. The methodology presented here, which ex-
tends seamlessly to undirected weighted graphs, uses the
intimate connection between structure and dynamics to
identify communities that can be revealing of the network

structure. In some cases, the original networks are static
and our dynamical approach is a convenient construct to
reveal the intrinsic resolution scales of the problem. If the
network has a dynamic origin, or indeed it can be related
to a Markov process [26, 27], the analysis of the stabil-
ity of the resulting graph provides information about the
hierarchy of time scales of the underlying landscape of
the system. From this dynamic viewpoint, the presence
of communities relevant over particular time scales hints
at a first step towards reduced representations in which
the communities can be lumped into aggregate variables.
The extension of this methodology to test systematically
for reduced models or model reduction schemes will be
the object of further research.
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