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Abstract. We introduce the exit time finite state projection (ETFSP) scheme, a truncation-
based method that yields approximations to the exit distribution and occupation measure associated
with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of
time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations
bound the measures from below; (ii) the total variation distances between the approximations and
the measures decrease monotonically as states are added to the truncation; and (iii) the scheme
converges, in the sense that, as the truncation tends to the entire state space, the total variation
distances tend to zero. Furthermore, we give a computable bound on the total variation distance
between the exit distribution and its approximation, and we delineate the cases in which the bound
is sharp. We also revisit the related finite state projection scheme and give a comprehensive account
of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two
biological examples: the computation of the first passage time associated with the expression of a
gene, and the fixation times of competing species subject to demographic noise.
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1. Introduction. The time of exit of a continuous-time Markov chain from a
domain (or exit time for short) is the time at which the chain leaves the domain for
the first time. The exit time is also known as the first passage time or, alternatively,
the hitting time of the complement of the domain. Two measures are associated
with an exit event: the exit distribution, which describes when and where the chain
exits the domain, and the occupation measure, which describes which states the chain
visits before exiting and at what times they are visited. These two measures can
be expressed in terms of the time-varying law (i.e, the state space distribution of the
chain as a function of time) of an auxiliary chain that is identical to the original chain
except that every state outside of the domain is turned into an absorbing state [54, 35].

There exists a rich literature on exit times, especially in physics and biomath-
ematics [31, 41, 49]. Recently, there has been renewed interest in exit times of
continuous-time Markov chains with discrete state space [2, 23, 55, 51], such as those
we study in this paper. While the exit problem from a small finite domain is tractable
[25, 26], the exit problem from an infinite or large domain can only be solved in special
cases [17, 23, 47]. Various approximation schemes have been developed to address this
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issue [3, 12, 29, 51]. However, most of them do not provide bounds or error estimates
on their accuracy.

The popular finite state projection (FSP) scheme [45] yields lower bounds on the
time-varying law of the continuous-time chain of interest. The scheme chooses a finite
truncation of the state space and solves an associated system of linear ordinary di↵er-
ential equations (ODEs) indexed by the states contained in the truncation. Inbuilt in
the procedure is a computable upper bound on the total variation distance between
the lower bounds obtained and the time-varying law. However, the FSP does not
provide information about the exit from a domain.

To fill this gap, we introduce the exit time finite state projection (ETFSP) scheme
(Sec. 1.1), that involves applying an FSP-like scheme to the auxiliary chain with
an absorbing complement mentioned above. We show that the scheme yields lower
bounds on the exit distribution and the occupation measure associated with an exit
time. For the exit distribution, we explain how to compute a bound on the error of its
approximation. Theorem 1.1 delineates the theoretical properties of ETFSP showing
that: (i) the error bound is sharp if and only if the exit event occurs with probability
one, and (ii) the scheme converges in total variation to the exit distribution and
occupation measure as the truncation approaches the entire state space.

A secondary contribution is Theorem 2.5, which gathers the theoretical properties
of the FSP scheme. In particular, we show that the error bound of the FSP scheme
is sharp if and only if the chain is non-explosive, in which case the error bound can
indeed be made arbitrarily small by including enough states in the truncation. In the
explosive case, the error bound remains non-zero, as observed in [37], and is limited
by the probability of explosion.

The final contribution of this paper is a new proof of an old theorem: Theorem 2.6
expresses the exit distribution in terms of the time-varying law of the aforementioned
auxiliary chain. Versions of this theorem pepper the literature (e.g., [21, 56, 48, 38,
49, 54]). Our variant relaxes the non-explosive and deterministic initial condition
assumptions in [54], and adds the analogous result for the occupation measure.

Related literature. To the best of our knowledge, the ideas underpinning the FSP
and ETFSP schemes were first delineated in the 1980’s queuing literature (see [27, 38,
39] and references therein) centred around randomisation techniques for continuous-
time chains with bounded rate matrices. Recently, schemes based on the FSP have
been used to bound the cumulative density function of the exit time of stochastic
reaction networks, a subclass of the continuous-time chains that we consider here [5, 6,
12]. Given that the ETFSP scheme bounds not only the cumulative density functions
but also the corresponding densities, our results imply the convergence of those other
schemes as a special case.

1.1. The ETFSP scheme: statement of the problem and main result.
We briefly define our problem setting, introduce the ETFSP scheme, and state our
main result (Theorem 1.1) detailing the theoretical properties of the scheme.

Problem definition. Let X := {X
t

: 0  t < T1} be a minimal time-
homogeneous continuous-time Markov chain on a probability triplet (⌦,F ,P) with
countable state space S, stable and conservative rate matrix Q := (q(x, y))

x,y2S ,
explosion time T1, and initial distribution �(x) := P ({X0 = x}) , 8x 2 S.

We single out a subset D of the state space S and refer to it as the domain. The
exit time ⌧ from the domain is the time when the chain first leaves D:

(1.1) ⌧(!) := inf{t 2 [0, T1(!)) : X
t

(!) 62 D}, 8! 2 ⌦,
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with the convention that the infimum of the empty set is infinity: inf{;} = 1.
The exit distribution µ and occupation measure ⌫ associated with the exit time

are defined as:

µ([a, b), x) := P ({⌧ 2 [a, b), X
⌧

= x}) 80  a < b < 1, 8x 2 S,(1.2)

⌫([a, b), x) := E
"Z

b^⌧^T1

a^⌧^T1

1
x

(X
t

)dt

#
80  a < b < 1, 8x 2 S,(1.3)

where c ^ d = min(c, d), c, d 2 R, and 1
x

denotes the indicator function of state x:
1
x

(y) = 1 if y = x and 0 otherwise.
For each state x, the measures µ(dt, x) and ⌫(dt, x) have densities µ(t, x) and

⌫(t, x) with respect to the Lebesgue measure. (We distinguish a measure from its
density by writing dt or t in its argument.) For small h > 0, the distribution t 7!
µ(t, x) is a function such that µ(t, x)h is the probability that the chain first exits
the domain via state x during the time interval [t, t + h]. Similarly (and assuming
non-explosivity for the chain), ⌫(t, x) is the average fraction of the interval [t, t + h]
that the chain spends in state x before exiting the domain. Formally, the relationship
between the exit distribution and occupation measure and their densities is:

µ([a, b), x) = 1Dc(x) �(x) 10(a) +

Z
b

a

µ(t, x)dt 80  a < b < 1, 8x 2 S,(1.4)

⌫([a, b), x) =

Z
b

a

⌫(t, x)dt 80  a < b < 1, 8x 2 S,(1.5)

where Dc denotes the complement of the domain and the term 1Dc(x) �(x) 10(a)
captures the event that the chain is started outside of the domain.

In this paper, we introduce the exit time finite state projection scheme to approx-
imate the exit distribution and occupation measure in a systematic manner. ETFSP
yields approximations of the densities µ(t, x) and ⌫(t, x), and, consequently, of their
marginals, including the distribution of the exit time, ⌧ , and of the exit location, X

⌧

.

The exit time finite state projection (ETFSP) scheme. The numerical
scheme consists of the following steps:

1. Choose a finite subset, or truncation, S
r

of the state space S and a final

computation time, tr
f

2 [0,1).
2. Solve the set of |S

r

| linear ODEs:

⌫̇

r(t, x) =
X

y2Dr

⌫

r(t, y) q(y, x),(1.6)

⌫

r(0, x) = �(x), 8x 2 D
r

,

µ̇

r(t, x) =
X

y2Dr

⌫

r(t, y)

 
X

z2Dr

q(y, z)q(z, x)

!
,(1.7)

µ

r(0, x) =
X

y2Dr

�(y) q(y, x), 8x 2 S
r

\Dc

,

over the time interval [0, tr
f

], where D
r

denotes the truncated domain D \S
r

.
3. Pad ⌫

r and µ

r with zeros:

⌫

r(t, x) := 0 if x 62 D
r

or t > t

r

f

,

µ

r(t, x) := 0 if x 62 S
r

\Dc or t > t

r

f

.

(1.8)
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The approximations of the measures µ(dt, x) and ⌫(dt, x) are defined as:

µ

r([a, b), x) := 1Dc\Sr (x)�(x)10(a) +

Z
b

a

µ

r(t, x)dt 80  a < b < 1, 8x 2 S,(1.9)

⌫

r([a, b), x) :=

Z
b

a

⌫

r(t, x)dt 80  a < b < 1, 8x 2 S.(1.10)

Theoretical characterisation of the ETFSP scheme. Our main result is
Theorem 1.1, which summarises the theoretical properties of the scheme. (For its
proof, see Sec. 3.) We show that µ

r and ⌫

r do not just approximate the exit distri-
bution µ and occupation measure ⌫, but bound them from below. We give simple
expressions for the mass of the approximations and their errors in terms of the exit
time ⌧ , the final computation time t

r

f

, and exit time from the truncation S
r

,

(1.11) ⌧

r

:= inf{0  t < T1 : X
t

62 S
r

} 8r 2 N.

To quantify the approximation errors ||µ� µ

r|| and ||⌫ � ⌫

r||, we use the total vari-
ation norm

||⇢|| := sup{|⇢(A)| : A 2 G}(1.12)

on the measures. We give easy-to-compute bounds for the approximation errors, and
we show that the bounds are sharp if the chain exits the domain almost surely (a
property that can be verified using Foster-Lyapunov criteria [40, 35]). Lastly, we
prove that the approximation errors and their bounds decrease monotonically as we
increase the truncation S

r

, and that the errors tend to zero as S
r

tends to S.
Theorem 1.1 (The exit time finite state projection scheme). Consider a min-

imal time-homogeneous continuous-time Markov chain with countable state space S,
stable and conservative rate matrix Q := (q(x, y))

x,y2S , explosion time T1, initial

distribution � := (�(x))
x2S . Suppose that the initial distribution satisfies

(1.13)
X

x2D
�(x) |q(x, x)| < 1

for a given domain D ✓ S and let µ and ⌫ denote, respectively, the exit distribution

and occupation measure associated with the exit time ⌧ from D. Let {S
r

}
r2N be

an increasing sequence of finite sets contained in S, {tr
f

}
r2N an increasing sequence

of non-negative final computation times, and {µr}
r2N and {⌫r}

r2N the sequences of

ETFSP approximations of the exit distribution and occupation measure, respectively,

defined by (1.6)–(1.8). Then the following properties hold:

(i) (Increasing sequence of lower bounds)

µ

0(t, x)  µ

1(t, x)  · · ·  µ(t, x) 8x 2 S, t 2 [0,1),

⌫

0(t, x)  ⌫

1(t, x)  · · ·  ⌫(t, x) 8x 2 S, t 2 [0,1).

(ii) (Mass of the approximations) The mass of µ

r

is the probability that the chain

exits the domain no later than exiting the truncation or the final time, i.e.,

µ

r([0,1),S) = P
�
{⌧  t

r

f

^ ⌧

r

}
�
, 8r 2 N.

The mass of ⌫

r

is:

⌫

r([0,1),S) = E
⇥
(⌧ ^ t

r

f

)1{⌧⌧r}
⇤
, 8r 2 N.
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(iii) (Computable error bounds) For any r 2 N,

||µ� µ

r|| :=P ({⌧ < 1})� P
�
{⌧  t

r

f

^ ⌧

r

}
�

(1.14)

 1�
 
�(Dc \ S

r

) +
X

x2Dc\Sr

Z
t

r
f

0
µ

r(t, x)dt

!
=: "

r

,

||⌫ � ⌫

r|| :=E [⌧ ^ T1]� E
⇥
(⌧ ^ t

r

f

)1{⌧⌧r}
⇤

(1.15)

E [⌧ ]�
X

x2Dr

Z
t

r
f

0
⌫

r(t, x)dt =: "⌫
r

.

Equality holds for (1.14) if and only if P ({⌧ < 1}) = 1, i.e., when the chain

exits the domain with probability one.

(iv) (Monotonicity of the error and of the error bound) The approximation errors

and their upper bounds are decreasing in r:

||µ� µ

r|| � ||µ� µ

r+1|| and "

r

� "

r+1, 8r 2 N(1.16)

||⌫ � ⌫

r|| � ||⌫ � ⌫

r+1|| and "

⌫

r

� "

⌫

r+1, 8r 2 N.(1.17)

(v) (Convergence of bounds) If [
r

S
r

= S and t

r

f

! 1 as r ! 1, the approxi-

mation µ

r

converges in total variation to the exit distribution µ:

lim
r!1

||µ� µ

r|| = 0.

Consequently, it follows from (iii) that:

lim
r!1

"

r

= 0 () P ({⌧ < 1}) = 1.

If E [⌧ ^ T1] < 1, the approximation ⌫

r

converges in total variation to the

occupation measure ⌫:

lim
r!1

||⌫ � ⌫

r|| = 0.

We refer to the upper bound "

r

defined in (1.14) as the error bound of the scheme
because it bounds the approximation error of µr. Note that the error bound is easily
calculated from µ

r, hence assessing the quality of the approximation requires no extra
e↵ort. The bound "

⌫

r

for the occupation measure ⌫r is harder to evaluate because the
mean exit time, E [⌧ ], is unknown in general. However, an upper bound on E [⌧ ] can
be obtained through additional computations beyond the scope of this paper (Sec. 5).

Condition (1.13) is a mild technical assumption (e.g., it is satisfied if the chain
is initialised deterministically) made to simplify the exposition by ensuring that the
density of the exit distribution is finite at time zero: µ(0, x) < 1 for all x 2 S.

Paper structure. The remainder of the paper is structured as follows. In Sec. 2,
we formally define the chain and give several preliminary lemmas required in the sub-
sequent proofs. Specifically, we review the forward equations and we provide proofs
for theoretical properties of the original FSP (Sec. 2.1), and we give the analytical
characterisation of the exit distribution and occupation measure and the marginals
of these measures (Sec. 2.1). To ease the reading of the paper, we have relegated the
technical proofs relevant to Sec. 2 to the Supplementary Material. Sec. 3 contains
the proof of Theorem 1.1. In Sec. 4, we apply the ETFSP scheme to two biologi-
cally motivated examples. We conclude by discussing possible implementations and
extensions of the ETFSP scheme in Sec. 5.
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2. Preliminaries. The starting point in our definition of a continuous-time
chain is a stable and conservative rate matrix Q := (q(x, y))

x,y2S , that is, a ma-
trix of real numbers indexed by the countable state space S satisfying

(2.1) q(x, y) � 0 8x 6= y, q(x, x) = �
X

y 6=x

q(x, y) > �1, 8x 2 S.

Whenever we write “a rate matrix Q” in this paper, we mean “a stable and conser-
vative rate matrix Q”. We construct our Markov chain X recursively by running the
Gillespie Algorithm [20, 33, 24] (see Appendix A in the Supplementary Material). In
particular, the algorithm returns the jump times {T

n

}
n2N at which transitions occur

and the sequence Y := {Y
n

}
n2N of states visited by the chain; both of these are de-

fined on the same probability space (⌦,F ,P). The sequence Y is itself a discrete-time
Markov chain known as the jump chain (or embedded chain) and its one-step matrix
is

(2.2) ⇡(x, y) :=

⇢
(1

x

(y)� 1) q(x, y)/q(x, x) if q(x, x) 6= 0
1
x

(y) otherwise
, 8x, y 2 S.

The sample paths t 7! X

t

(!) of the continuous-time chain X are defined by

(2.3) X

t

(!) := Y

n

(!) 8t 2 [T
n

(!), T
n+1(!)), ! 2 ⌦.

These paths are defined only up until the explosion time

T1(!) := lim
n!1

T

n

(!) 8! 2 ⌦.

The limit exists because {T
n

(!)}
n2N is an increasing sequence for each ! 2 ⌦. In

other words, X
t

(!) is defined only for pairs (t,!) such that t < T1(!). The reason
behind the name “explosion time” given to T1 is that, by this moment in time, the
chain has left every finite subset of the state space. In particular, let S0 ✓ S1 ✓ . . . be
an increasing sequence of finite subsets (or truncations) of S such that [

r

S
r

= S and
⌧

r

be the time (1.11) that the chain X first exits S
r

. That our truncations form an
increasing sequence implies that {⌧

r

}
r2N is an increasing sequence of random variables

and the limit lim
r!1 ⌧

r

(!) exists for each ! 2 ⌦.

Lemma 2.1 (Lem. 2.18 of [35]). If {S
r

}
r2N is an increasing sequence of finite

sets such that [
r

S
r

= S, then ⌧

r

tends to T1 almost surely.

The limiting random variable lim
r!1 ⌧

r

is the point in time by which the chain
has left each of the truncations in the sequence {S

r

}
r2N. The above tells us that

lim
r!1 ⌧

r

is (almost surely) equal to T1 regardless of the particular sequence of
finite truncations {S

r

}
r2N in its definition. For this reason, we interpret T1 as the

point in time that the chain leaves the state space, or, in other words, explodes.
We now give two technical lemmas we will use throughout the paper. The first

delineates the simple relationship between the exit time

(2.4) � := inf{n 2 N : Y
n

62 D}

of the jump chain Y and the exit time ⌧ of X (defined in (1.1)).

Lemma 2.2 (Lem. 2.27 of [35]). If ⌧ and � are as in (1.1) and (2.4), then

⌧(!) =

⇢
T

�(!)(!) if �(!) < 1
1 if �(!) = 1 8! 2 ⌦.
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The other lemma allows us to build auxiliary chains that will be key in the proofs
in this paper.

Lemma 2.3. Suppose that a second rate matrix Q̄ coincides with Q on D:

q(x, y) = q̄(x, y), 8x 2 D, y 2 S.

There exists a chain X̄ := {X̄
t

}
t�0 also defined on (⌦,F ,P) with rate matrix Q̄, jump

times {T̄
n

}
n2N, jump chain Ȳ := {Ȳ

n

}
n2N, explosion time T̄1, and exit times

�̄ := inf{n 2 N : Ȳ
n

62 D}, ⌧̄ := inf{t 2 [0, T̄1) : X̄
t

62 D},

such that X and X̄ exit the domain at the same time:

(2.5) �(!) = �̄(!), ⌧(!) = ⌧̄(!), ⌧(!) ^ T1(!) = ⌧̄(!) ^ T̄1(!), 8! 2 ⌦;

and that X and X̄ are identical up to (and including) this instant:

(2.6) X

t

(!) = X̄

t

(!), 8(t,!) 2 [0,1)⇥ ⌦ : t  ⌧(!) ^ T1(!).

In particular, until the moment of exit, the jump chain and jump times of both chains

are identical:

(2.7) Y

n

(!) = Ȳ

n

(!), T

n

(!) = T̄

n

(!), 8(n,!) 2 N⇥ ⌦ : n  �(!).

Proof. See Appendix A in the Supplementary Material.

2.1. The time-varying law of the chain and the FSP scheme. The time-
varying law of the chain

(2.8) p

t

(x) := P ({X
t

= x, t < T1}) 8x 2 S,

satisfies |S| linear ordinary di↵erential equations known asKolmogorov’s forward equa-

tions (or the chemical master equation or, simply, the forward equations).

Theorem 2.4 (Kolmogorov’s forward equations, Cor. 2.21 of [35]). Suppose that

the diagonal of the rate matrix is �-integrable:

(2.9) E [|q(X0, X0)|] =
X

x2S
�(x) |q(x, x)| < 1.

For each x 2 S, t 7! p

t

(x) is a continuously di↵erentiable function on [0,1). Fur-

thermore, the time-varying law p

t

:= {p
t

(x)}
x2S is the minimal non-negative solution

of the equations

(2.10) ṗ

t

(x) =
X

y2S
p

t

(y)q(y, x), p0(x) = �(x), 8x 2 S, t 2 [0,1).

In the above, by “minimal non-negative solution” we mean that if k

t

is any
other non-negative (k

t

(x) � 0 for each x 2 S and t 2 [0,1)) di↵erentiable function
satisfying (2.10), then k

t

(x) � p

t

(x) for each x 2 S and t � 0 (if the chain is explosive,
then the equations can have multiple solutions, see [9, 22, 50]). Except for a few
special cases, no analytical expressions for this minimal solution are known. If S is
infinite, or finite but large, direct numerical computation of this solution is not possible
either. Instead, we can use the popular finite state projection (FSP) algorithm [45]:
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a numerical scheme that yields a set of lower bounds pr
t

:= {pr
t

(x)}
x2S on the chain’s

time-varying law p

t

:= {p
t

(x)}
x2S . We identify these bounds with the measure on

(S, 2S) defined by p

r

t

(A) =
P

x2A

p

r

t

(x) for all A ✓ S, where 2S denotes the power
set of S. The FSP scheme consists of: choosing a (finite) truncation S

r

of the state
space S; solving numerically the set of |S

r

| linear ODEs

(2.11) ṗ

r

t

(x) =
X

y2Sr

p

r

t

(y)q(y, x), p

r

0(x) = �(x), 8x 2 S
r

,

over the time interval [0, t]; and padding p

r

t

with zeros: pr
t

(x) := 0 for all x 62 S
r

.
We collect various useful properties of the FSP scheme in Theorem 2.5 below.

Most of these properties can be found elsewhere: (i) and (v) are shown in Prop. 2.14
of [1] (however, there is a small mistake therein, see [8]); (iv) and the bound in (iii)
are proven in [45]. Although (ii) is mentioned in [16, 46], we have not encountered a
proof elsewhere. Similarly, the explicit expression of the error (i.e., the total variation
distance between p

t

and its approximation) in (iii) and the necessary and su�cient
condition for the bound to be sharp appear to be new.

Theorem 2.5 (The finite state projection scheme). Let {S
r

}
r2N be an increasing

sequence of finite sets contained in S, ⌧
r

the exit time from the truncation S
r

, and

{pr
t

}
r2N the sequence of FSP approximations defined by (2.11). Then the following

properties hold:

(i) (Increasing sequence of lower bounds)

p

0
t

(x)  p

1
t

(x)  · · ·  p

t

(x), 8x 2 S t � 0.

(ii) (Mass of the approximation) The mass of the approximation is the probability

that the chain has not yet exited the truncation:

p

r

t

(S) = p

r

t

(S
r

) = P ({t < ⌧

r

}) , 8t � 0.

(iii) (Computable error bound) For any r 2 N,

||p
t

� p

r

t

|| = P ({t < T1})� P ({t < ⌧

r

})  1� p

r

t

(S
r

), 8t � 0,

and equality holds if and only if P ({T1 = 1}) = 1, i.e., when the chain is

non-explosive.

(iv) (Monotonicity of the error and of the error bound) The approximation error

||p
t

� p

r

t

|| and its upper bound 1� p

r

t

(S
r

) are decreasing in r:

(2.12) ||p
t

� p

r

t

||  ||p
t

� p

s

t

|| , 1� p

r

t

(S
r

)  1� p

s

t

(S
s

), 8s  r, 8t � 0

and increasing in t:

(2.13) ||p
t

� p

r

t

|| � ||p
u

� p

r

u

|| , 1�p

r

t

(S
r

) � 1�p

r

u

(S
r

), 8u  t, 8r 2 N.

Consequently, the FSP scheme returns not only the approximation p

r

t

of p

t

,

but also an approximation p

r

s

of p

s

for each s  t with an error that is bounded

uniformly in s:

sup
s2[0,t]

||p
s

� p

r

s

|| = ||p
t

� p

r

t

||  1� p

r

t

(S
r

), 8t � 0.

(v) (Convergence of bounds). If [
r2NSr

= S, then the scheme converges:

lim
r!1

||p
t

� p

r

t

|| = 0, 8t � 0.
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Proof. See Appendix B in the Supplementary Material.

The ideas behind Theorem 2.5 emerge from the following construction. Consider
a second chain X

r which is identical to X except that every state outside of the
truncation S

r

is turned into an absorbing state. In particular, let Xr be the chain of
Lemma 2.3 with S

r

replacing D, and Q

r := (qr(x, y))
x,y2S replacing Q̄, where

(2.14) q

r(x, y) :=

⇢
q(x, y) if x 2 S

r

0 if x 62 S
r

Lemma 2.3 states that the chains X and X

r coincide until (and including) the time
⌧

r

at which they simultaneously leave the truncation S
r

for the first time, at which
point X

r becomes trapped in a state outside of the truncation and never returns to
S
r

. In contrast, X may return to the truncation, hence the probability p

t

(x) that
X is at any given state x inside the truncation at time t is greater or equal than
the probability that X

r is in the same state at the same time. Since the law of Xr

t

(restricted to S
r

) is the solution of (2.11) (Theorem 2.4), we arrive at Theorem 2.5(i).
The probability p

r

t

(S
r

) that Xr is inside the truncation at time t is the same as
the probability P ({t < ⌧

r

}) that it has not yet left. Theorem 2.5(ii)–(iii) follows from
this fact. If Xr has not left the truncation by time t, then it has not left the larger

truncation S
r+1 by t. Similarly, if the chain has not left S

r

by time t, it has not left
by any earlier time s  t. For these reasons, Theorem 2.5(iv) holds.

Due to (iii), proving the convergence of the scheme consists of showing that
P ({t < ⌧

r

}) converges to P ({t < T1}) as r tends to infinity. Recall that P ({t < T1})
is the probability that the chain has not left the state space by time t while P ({t < ⌧

r

})
is the probability that the chain has not left the truncation S

r

by time t. Because the
truncations S

r

approach the complete state space as r tends to infinity, it must be
the case that P ({t < ⌧

r

}) approaches P ({t < T1}) or, equivalently, that the scheme
converges as stated in Theorem 2.5(v).

The FSP algorithm as proposed in [45] consists of repeatedly computing p

r

t

while
increasing the size of the truncation until the error bound 1� p

r

t

(S
r

) is smaller than
some prescribed tolerance. As noted in [37], the algorithm may not terminate, even if
the truncations tend to the state space as r tends to infinity. Theorem 2.5(v) clarifies
this issue. Although the scheme converges (i.e., p

r

t

tends to p

t

in total variation
as r tends to infinity or, equivalently, pr

t

(S
r

) tends to P ({t < T1})), this does not
imply that the error bound 1� p

r

t

(S
r

) converges to zero. This is only the case if the
chain is non-explosive (i.e., P ({T1 < 1}) = 0). Otherwise, P ({t < T1}) > 0 for all
t > 0 (see the proof of Theorem 2.5(iii)) and the algorithm will not terminate if the
tolerance is set to be smaller than 1� P ({t < T1}). In practice, non-explosivity can
be established using a Foster-Lyapunov criterion [7, 42].

We close this section by pointing out that the FSP scheme can also be used
to compute converging approximations of the occupation measure associated with a
deterministic time t, which tells us how long the chain has spent in state x by time t

(see [35, Cor. 3.2] for details).

2.2. The exit time and its associated exit distribution and occupation
measure. Let µ, ⌫, µr, and ⌫

r be defined as in (1.2)–(1.3) and (1.9)–(1.10). Our
convention of inf ; = 1 and the exit time’s definition in (1.1) implies that it is finite
if and only if it is strictly less than the explosion time: ⌧(!) < 1 () ⌧(!) <

T1(!) for any ! 2 ⌦. Therefore, X
⌧

is defined on {⌧ < 1} and µ is well-defined.
Technically, µ, ⌫, µr, and ⌫

r are unsigned measures on ([0,1)⇥S,X ) where X is the
product sigma algebra of 2S and the Borel sigma B([0,1)) on [0,1). When using
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(1.2)–(1.3) and (1.9)–(1.10) to define these four measures, we exploit the fact that
{[a, b)⇥ {x} : 0  a < b < 1, x 2 S} is a ⇡-system that generates X .

From the definition (1.2) of the exit distribution µ, it follows that its mass is the
probability that the chain eventually leaves the domain:

(2.15) µ([0,1),S) = P ({⌧ < 1, X

⌧

2 S}) = P ({⌧ < 1}) ,

Similarly, it follows from (1.3) that the mass of the occupation measure is

(2.16) ⌫([0,1),S) = E
"Z

⌧^T1

0

 
X

x2S
1
x

(X
t

)

!
dt

#
= E [⌧ ^ T1] .

If the chain is non-explosive (i.e., P ({T1 = 1}) = 1), the mass is the mean exit time.
For explosive chains (i.e., P ({T1 = 1}) < 1), the same holds as long as the chain
cannot explode without first exiting the domain (i.e., P ({⌧  T1}) = 1).

In (1.2)–(1.3), we defined the exit distribution µ and occupation measure ⌫ prob-
abilistically in terms of the chain X. These measures are characterised analytically
in terms of the solutions of the ODEs (2.18) in the following theorem.

Theorem 2.6 (Analytical characterisation of µ and ⌫). Suppose that (1.13)
holds. The exit distribution µ and occupation measure ⌫ decompose as in (1.4)–(1.5)
and their densities ⌫(t, x) and µ(t, x) are non-negative and continuous functions on

[0,1), for each x 2 S. Moreover,

(2.17) µ(t, x) = 1Dc(x) ˙̂p
t

(x), ⌫(t, x) = 1D(x)p̂t(x), 8x 2 S, t 2 [0,1),

where p̂

t

is the minimal non-negative solution (as in Theorem 2.4) of

(2.18) ˙̂
p

t

(x) =
X

y2D
p̂

t

(y)q(y, x), p̂0(x) = �(x), 8x 2 S, t 2 [0,1).

Proof. See Appendix C in the Supplementary Material.

The ideas behind the above theorem are similar to those behind Theorem 2.5.
In particular, we consider a second chain X̂ identical to X except that every state
outside of the domain D is turned into an absorbing state. That is, let X̂ be the chain
of Lemma 2.3 after replacing Q̄ with Q̂ := (q̂(x, y))

x,y2S , where

(2.19) q̂(x, y) :=

⇢
q(x, y) if x 2 D
0 if x 62 D .

The chains X and X̂ are identical up until (and including) the time at which they
both simultaneously exit the domain via the same state. Therefore the probability
µ([0, t), x) that X has exited the domain by time t via state x 2 Dc is also the
probability that X̂ exited via x by time t. Because X̂ is trapped in the first state it
enters once leaving the truncation, it follows that µ([0, t), x) is the probability that X̂
is in state x by time t. The characterisation of the exit distribution then follows from
Theorem 2.4. The characterisation of the occupation measure follows similarly. The
key observation is that once X̂ leaves the domain it cannot return, hence the amount
of time that X̂ spends in a state x 2 D until the moment it exits the domain is the
total time it will spend in that state.
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The marginals. In applications, we are often interested in the distribution of
the exit time itself, that is, the time marginal of the exit distribution

(2.20) µ

T

(B) := µ(B,S) = P ({⌧ 2 B,X

⌧

2 S}) = P ({⌧ 2 B}) , 8B 2 B([0,1)).

Technically, the above is the distribution of ⌧ restricted to [0,1). However, we recover
the complete distribution from µ

T

as P ({⌧ = 1}) = 1�P ({⌧ < 1}) = 1�µ

T

([0,1)).
Equations (2.17)–(2.18) imply that µ(t, x) is non-negative and so combining (1.4) and
Tonelli’s theorem shows that the time-marginal µ

T

(dt) of the exit distribution also
has a density µ

T

(t) with respect to the Lebesgue measure and that this density is
given by µ

T

(t) =
P

x2S µ(t, x):

(2.21) µ

T

(B) = �(Dc)�0(B) +

Z

B

µ

T

(t)dt 8B 2 B([0,1)), x 2 S,

where �0 denotes the Dirac measure at zero (�0(B) = 1 if 0 2 B and 0 otherwise).
In other cases, we are interested in where on the boundary the exit occurs or

where in the domain the chain spends time up until exiting. The space marginals of
the exit distribution and the occupation measure provide this information:

µ

S

(x) := µ([0,1), x) = P ({X
⌧

= x, ⌧ < 1}) , 8x 2 S,(2.22)

⌫

S

(x) := ⌫([0,1), x) = E
"Z

⌧^T1

0
1
x

(X
t

)dt

#
, 8x 2 S.(2.23)

Clearly, one can obtain explicit expressions for µ
T

, µ

S

, and ⌫

S

in terms of p̂.

3. Theoretical characterisation of the ETFSP scheme: Proof of Theo-
rem 1.1 and bounding the marginal distributions. We now prove Theorem 1.1,
which delineates the theoretical properties of the ETFSP scheme. Before delving into
the proof, we discuss briefly some the intuitive ideas underlying the proof for the exit
distribution (the occupation measure is analogous).

Consider the auxiliary chain X

r introduced above, which is identical to the origi-
nal chain except that each state outside of the truncation S

r

is turned into an absorb-
ing state. Once Xr exits the truncation, it becomes trapped in whichever state it just
entered. For this reason, if Xr has not exited the domain by the time it exits S

r

, then
it will never exit. Theorem 2.6 tells us that µr(dt, x) is the exit distribution ⇢

r(dt, x)
of Xr restricted to [0, tr

f

]⇥S
r

. Thus, Theorem 1.1(ii) follows from the fact that X and
X

r are identical up until, and including, the moment that they simultaneously exit
the truncation (Lemma 2.3). In contrast with X

r, the original chain X may still exit
the domain after it leaves the truncation because it does not necessarily get trapped
in an absorbing state. During a small interval of time [t, t + h], the probability of
exiting the domain D via state x is µ(t, x)h for X and ⇢

r(t, x)h for Xr. Given that,
for any interval size h, this probability cannot be greater for Xr than for X, the lower
bound property in Theorem 1.1(i) follows from the continuity of µ(·, x) and ⇢

r(·, x)
(Theorem 2.6). The remainder of the theorem then follows (i)–(ii) and the fact that
⌧

r

is an increasing sequence with limit T1 (Lemma 2.1).

Proof of Theorem 1.1. Let Y r := {Y r

n

}
n2N, {T r

n

}
n2N, and T

r

1 be the jump chain,
jump times, and explosion time of Xr.

(i) Theorem 2.6 tells us that ⌫(t, x) = 1D(x)p̂t(x), where p̂

t

is the minimal non-
negative solution of (2.18). Theorem 2.4 tells us that p̂

t

is the time-varying law of the
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auxiliary chain X̂ with rate matrix Q̂ defined in (2.19). Applying the FSP scheme to
X̂ instead of X entails solving

(3.1) k̇

r

t

(x) =
X

y2Sr

k

r

t

(y)q̂(y, x) =
X

y2Dr

k

r

t

(y)q̂(y, x), k

r

0(x) = �(x), 8x 2 S
r

and setting k

r

t

(x) = 0 for all x 62 S
r

. Comparing (1.6) and (3.1) we can see that

(3.2) ⌫

r(t, x) = k

r

t

(x), 8x 2 D
r

, t  t

r

f

.

Given (1.8) and the fact that the final times t

r

f

are increasing, the second set of
inequalities then follows directly from (2.17) and Theorem 2.5(i). Similarly, (3.2),
(1.7), and the finiteness of D

r

imply that

µ

r+1(t, x)� µ

r(t, x) =
X

z2Dr

(kr+1
t

(z)� k

r

t

(z))q(z, x) � 0 8x 2 S
r

\Dc

,

where the inequality follows from Theorem 2.5(i) and the fact that x 6= z in the above
sum so that q(z, x) � 0. Replacing µ

r+1 by µ and k

r+1 by p̂ in the above argument
and applying (1.8) and (2.17) gives us the other set of inequalities.

(ii) Aside from having to use the fact the explosion time of the chain X

r is a.s.
infinite (see (B.3) in the Supplementary Material), the proof of the expression for the
mass of ⌫r is analogous to that for µr and so we skip. Applying Theorem 2.6 to X

r

instead of X shows that µr, restricted to [0, tr
f

]⇥S
r

, coincides with the corresponding
restriction of the density of the exit distribution associated with the first time that
X

r exits the domain:
⌧

r

D := inf{0  t < T

r

1 : Xr

t

62 D}.

Thus, (1.8) and the definition of the exit distribution (1.2) imply that the mass of µr

is the probability that Xr exits the domain no later than the final time t

r

f

and via a
state inside the truncation:

µ

r([0,1),S) = µ

r([0, tr
f

),S) = P
�

({⌧ rD  t

r

f

, X

r

⌧

r
D
2 S

r

}).

As we now show, this probability is the same as that of the original chain exited
the domain no later than the truncation and the final time. The key observation is
that whenever Xr leaves the truncation, it becomes trapped in whichever state it just
entered. This implies that if Xr has not left the domain by the time it exits the
truncation, then it never will. Formally, it follows from Lemma 2.2 and (B.2) in the
Supplementary Material that

{⌧
r

< ⌧

r

D  t

r

f

} = {Xr

⌧

r
D
= X

r

⌧r
, ⌧

r

< ⌧

r

D  t

r

f

},

(recall that Lemma 2.3 implies that Xr and X exit the truncation at the same time
⌧

r

). However, the latter set must be the empty set since X

r

⌧r(!)(!) (resp. X⌧

r
D(!)(!))

lies inside (resp. outside) of the domain in order for Xr to exit the truncation before
it exits the domain (⌧

r

(!) < ⌧

r

D(!)). Thus,

{⌧ rD  t

r

f

, X

r

⌧

r
D
2 S

r

} = {⌧ rD  t

r

f

, ⌧

r

D  ⌧

r

, X

r

⌧

r
D
2 S

r

} = {⌧ rD  t

r

f

^ ⌧

r

}

Since (2.7) implies {⌧ rD  t

r

f

^ ⌧

r

} = {⌧  t

r

f

^ ⌧

r

}, the result follows.
(iii) As (i) shows that µ � µ

r and ⌫ � ⌫

r are unsigned measures, (1.14)–(1.15)
follow from the fact that the total variation norm of a unsigned measure is its mass,
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(ii), the definitions (1.6)–(1.8) of µr and ⌫

r, and the expression for the masses of µ
and ⌫ in (2.15)–(2.16).

(iv) This follows directly from (i) and (1.14)–(1.15).
(v) Because Lemmas 2.1 and 2.2 imply that

lim
r!1

1{⌧t

r
f^⌧r} = 1{⌧<1}, lim

r!1
⌧ ^ t

r

f

^ ⌧

r

= ⌧ ^ T1, almost surely,

the convergence follows from the monotone convergence theorem and (1.14)–(1.15).

Bounding the marginals. Using the ETFSP scheme we also obtain converging
approximations of the marginals µ

T

, µ
S

, and ⌫

S

of the exit distribution and occupa-
tion measure (see (2.20)–(2.23)). In particular, marginalising (1.9)–(1.10), we obtain
approximations of µ

T

, µ
S

, and ⌫

S

:

µ

r

T

(B) : = µ

r(B,S) = �(Dc \ S
r

)�0(B) +

Z

B

µ

r

T

(t)dt, 8B 2 B([0,1)),(3.3)

µ

r

S

(x) : = µ

r([0,1), x), ⌫

r

S

(x) := ⌫

r([0,1), x), 8x 2 S,(3.4)

where µ

r

T

(t) :=
P

x2Sr
µ

r(t, x). The fact that µ

r(dt, x) and ⌫

r(dt, x) bound from
below the exit distribution and occupation measure (Theorem 1.1 (i)) implies that
the marginals of the approximations µr

T

(dt), µr

S

(x), and ⌫

r

S

(x) bound µ

T

(dt), µ
S

(x),
and ⌫

S

(x) from below. For this reason, the fact that the total variation norm of an
unsigned measure is its mass implies that

(3.5) ||µ
T

� µ

r

T

|| = ||µ
S

� µ

r

S

|| = ||µ� µ

r|| , ||⌫
S

� ⌫

r

S

|| = ||⌫ � ⌫

r|| ,

In other words, the errors of the marginal approximations are the same as those of
the complete approximations. In full, we have the following corollary of Theorem 1.1:

Corollary 3.1. Suppose that the premise of Theorem 1.1 is satisfied. Consider

the approximations of the marginals µ

r

T

, µ

r

S

and ⌫

r

S

defined in (3.3)–(3.4).
(i) (Increasing sequence of lower bounds) The approximations form an increasing

sequence of lower bounds:

µ

0
T

(t)  µ

1
T

(t)  · · ·  µ

T

(t), 8t 2 [0,1)

µ

0
S

(x)  µ

1
S

(x)  · · ·  µ

S

(x), ⌫

0
S

(x)  ⌫

1
S

(x)  · · ·  ⌫

S

(x), 8x 2 S.

(ii) (Computable error bounds and monotonicity properties) The equalities and

inequalities in (1.14)–(1.17) hold identically if we replace µ, µ

r

with µ

T

, µ

r

T

(or µ

S

, µ

r

S

) and ⌫, ⌫

r

with ⌫

S

, ⌫

r

S

.

(iii) (Convergence of bounds) Suppose that [
r

S
r

= S and that t

r

f

! 1 as r ! 1.

The approximations of the marginals of the exit distribution converge:

lim
r!1

||µ
T

� µ

r

T

|| = lim
r!1

||µ
S

� µ

r

S

|| = 0.

Furthermore, if E [⌧ ^ T1] < 1, then the approximation of the space marginal

of the occupation measure converges:

lim
r!1

||⌫
S

� ⌫

r

S

|| = 0.

Proof. Given (3.5), the corollary follows immediately from Theorem 1.1.
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Fig. 4.1: Threshold statistics for stochastic gene expression. (a) Three representa-
tive sample paths (light grey, grey, and black lines) of the gene expression model (4.1) exiting
at pc = 100 protein molecules. The red dashed lines indicate the boundaries of the trun-
cations Sr with increasing r. (b) The error bound "r decreases with increasing truncation
parameter r and final computation time t

r
f . (c) Lower bounds on the exit distribution for

the truncations r = 3, 5, 8, 16 (yellow indicates maximum probability panel-wise). (d) The
lower bounds on the mRNA-marginal exit distribution are monotonically increasing with r

and become visually indistinguishable for r > 12. (e) Corresponding bounds on the exit
time density. (f) Bounds on the conditional exit time distributions µT (t|m) with r = 20;
inset shows error bounds (4.3). Parameters: k1 = 5 k2 = 1, k3 = 10, k4 = 0.1 and initial
condition �(x) = 10(m)10(p) for all panels.

4. Applications. In this section, we apply the ETFSP scheme to two biological
examples from the literature. To simplify the exposition, we assume without loss of
generality that the chain starts inside the domain: P ({X0 2 D}) = �(D) = 1.

4.1. Threshold model for stochastic gene expression. Proteins perform es-
sential functions inside living cells. These molecules are expressed from genes through
a series of biochemical reactions, and their absolute levels (and the timings in which
these are reached) are critical to cell decisions, such as di↵erentiation [12] or lysis in
the bacteriophage � [53]. Let us consider a simple model of gene expression involving
the transcription and degradation of mRNA molecules (with rates k1 and k2, respec-
tively), the synthesis of a protein from each mRNA molecule (with rate k3), and the
degradation of proteins (with rate k4):

? k1�! mRNA
k2�! ?, mRNA

k3�! mRNA+ Protein, Protein
k4�! ?.(4.1)

The state of the system is x = (m, p), where m is the number of mRNAs and p is the
number of proteins; hence the state space is S = N2. The reactions obey mass-action
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kinetics and the rate matrix is given by

q ((m1, p1), (m2, p2)) =

8
>>>>>><

>>>>>>:

�k1 � k2m1 � k3m1 � k4p1 if (m2, p2) = (m1, p1)
k1 if (m2, p2) = (m1 + 1, p1)
k2m1 if (m2, p2) = (m1 � 1, p1)
k3m1 if (m2, p2) = (m1, p1 + 1)
k4p1 if (m2, p2) = (m1, p1 � 1)
0 otherwise

.

We are interested in characterising the time taken for the protein number p to
attain a critical level p

c

. To this end, we consider the domain

D := {(m, p) 2 N2 : p < p

c

},

so that the exit time ⌧ from the domain D correspond to the first instant at which p

c

proteins accumulate. We compute the lower bounds µ

r(t, (m, p

c

)) of the exit distri-
bution µ(t, (m, p

c

)), the joint distribution of the exit time and the number of mRNAs
present at exit. For ease of notation, in the rest of this section, we omit the protein
number argument (as it is p

c

at time ⌧), and we write (m, p

c

) as m.
We use the truncations

S
r

= {(m, p) 2 N2 : p  p

c

, m < r} 8r 2 N,

shown in Fig. 4.1(a). Fig. 4.1(b) shows how the error bound "

r

decreases to zero with
r and t

r

f

, whereas Fig. 4.1(c) shows the lower bounds µ

r(t,m) for various values of

the truncation parameter r and t

r

f

= 30 (with "

r

< 10�4 for r = 16).
The exit time correlates negatively with the level of mRNA: the more mRNA

molecules are present, the higher the expression, and the quicker the protein number
rises. Figs. 4.1(d) and (e) show the corresponding lower bounds µr

S

(m) and µ

r

T

(t) on
the space and time marginals µ

S

(m) and µ

T

(t), respectively.
To gain a quantitative understanding of the anti-correlation between the exit time

and mRNA numbers, we also compute the density of the exit time conditioned on the
number of mRNA present:

µ(t|m) :=
µ(t,m)

µ

S

(m)
� µ

r(t,m)

µ

r

S

(m) + "

r

=: µr(t|m).(4.2)

The bound on the right-hand side follows from the fact that µ
S

(m) is no greater than
µ

r

S

(m) + "

r

due to the definition of the total variation norm. Integrating both sides
of (4.2), we obtain the following bound on the total variation distance between the
conditional density and its approximation:

||µ(·|m)� µ

r(·|m)||  "

r

µ

r

S

(m) + "

r

.(4.3)

Fig. 4.1(f) shows this density computed using r = 20 for various values of m. As
expected, the mode of the distribution decreases with increasing mRNA number but,
interestingly, the density also narrows with increasing m. In the inset of Fig. 4.1(f)
we verify that the approximation error is small for each m.

4.2. Fixation statistics in population dynamics. The ETFSP framework
can be used to provide insights into the fixation (or extinction) statistics of competing
populations with small numbers. Common models in ecology and evolution are of the
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Fig. 4.2: Dynamics of the deterministic fixation model. Phase portraits of the ODE
model of two competing species (4.5) for di↵erent values of the growth rate di↵erence ��.
(a,b) If �� 6= 0, the system has a single stable fixed point corresponding to the fixation of
the species with the highest growth rate. Filled dots denote stable fixed points; open circles
denote unstable fixed points. (c) For equal growth rates (�� = 0), the dynamics approaches
a line of fixed points, representing coexistence of the two species (neutral case).

Lotka-Volterra type [10]. Let us consider the population dynamics of two competing
species S1 and S2:

S

i

bi/K���! 2S
i

, S

i

di/K���! ?, S

i

+ S

j

cij/K
2

����! S

j

, 8i, j 2 {1, 2},(4.4)

with state space S := N2. The first and second reactions describe the birth and death
of individuals with rates b

i

> 0 and d

i

> 0, respectively. The third reaction describes
intra- and inter-species competition of strength c

ij

> 0. The parameter K > 0 is the
e↵ective carrying capacity. Let us denote the numbers of individuals by x = (x1, x2).
The rate matrix is given by

q(x, y) =

8
>><

>>:

�
P2

i=1

�
w

+
i

(x) + w

�
i

(x) + w

i1(x) + w

i2

�
if y = x

w

+
i

(x) if y = x+ e

i

8i 2 {1, 2}
w

�
i

(x) + w

i1(x) + w

i2 if y = x� e

i

8i 2 {1, 2}
0 otherwise

,

where e1 := (1, 0), e2 := (0, 1) and

w

+
i

(x) := b

i

x

i

K

, w

�
i

(x) := d

i

x

i

K

, w

ij

(x) := c

ij

x

i

x

j

K

2
, 8i, j 2 {1, 2}.

For simplicity, we fix c11 = c12 = c21 = c22 = 1 and K = 30.
Deterministic dynamics. The deterministic dynamics of the populations is mod-

elled with the set of ODEs:

ẋ

i

= w

+
i

(x)� w

�
i

(x)� w

i1(x)� w

i2(x) 8i = 1, 2.(4.5)

The equilibrium (x1, x2) = (0, 0) representing the extinction of both populations is
unstable. Fixation of S1 occurs when S2 goes extinct and vice versa, i.e., when the
dynamics approaches one of the two axes. Which of the two species becomes extinct
depends on the growth rate di↵erence:

�� := �1 � �2 where �

i

= b

i

� d

i

, 8i, j 2 {1, 2}.(4.6)
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Fig. 4.3: Computation of fixation probabilities and times. (a) The lower bounds on
the fixation probabilities converge (red S1, blue S2) with increasing truncation parameter r,
and the error bound (yellow) approaches zero. (b) The lower bounds on the exit location
distributions converge with increasing r (from light to dark). (c) The lower bounds on the
density of fixation times also converge. Parameters: b1 = 2, b2 = 5, d1 = 1, d2 = 4, �� = 0.

For �� > 0 (Fig. 4.2(a)), there is an unstable fixed point on the x1 = 0 axis and a
stable one on the x2 = 0 axis; hence the trajectories approach the stable fixed point
leading to fixation of S1. For �� < 0, the situation is reversed resulting in the fixation
of S2 (Fig. 4.2(b)). For equal growth rates (�� = 0), the dynamics approaches an
invariant manifold (a line of fixed points) on which the two species coexist with ratios
depending on their initial populations (Fig. 4.2(c)).

Computation of fixation probabilities and times. In the stochastic setting, both
species S1 and S2 have non-zero probability of becoming fixed regardless of the value
of ��. To study this phenomenon, we consider the exit time from the domain

D = {(x1, x2) 2 N2 |x1 > 0, x2 > 0},

with complement Dc that can be decomposed into the disjoint subsets

Dc

1 := {(x1, 0) 2 N2 : x1 > 0}, Dc

2 = {(0, x2) 2 N2 : x2 > 0},

representing, respectively, the fixation of S1 and of S2, and a third subset {(0, 0)}
representing the extinction of both species.

We compute lower bounds µr

S

(Dc

1) and µ

r

S

(Dc

2) on the fixation probabilities using
the ETFSP scheme and the truncations

S
r

= {(x1, x2) 2 N2 : x1 + x2  r},

with final computation time t

r

f

:= 3000, and initial condition � = 1(10,10).
In Fig. 4.3(a), the results for the neutral case �� = 0 with di↵erent death rates

d1 < d2 show that the error bound "

r

decreases with r and can be made arbitrarily
small. However, in contrast with the deterministic case, S1 fixes with higher proba-
bility and the fixation dynamics does not depend only on the growth rate di↵erence
�� but also on the di↵erence in death rates �d := d1 � d2. This demographic noise
drives the species with the higher death rate (S2) to extinction more frequently [11].

To study this e↵ect, we consider the distribution of S1 or S2 upon fixation
(Fig. 4.3(b)). The probabilities of exiting either through the states x1 in Dc

1 or the
states x2 in Dc

2 are bounded by

µ

S

(x1, 0) � µ

r

S

(x1, 0), µ

S

(0, x2) � µ

r

S

(0, x2).
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Fig. 4.4: Fixation in the presence of demographic noise. (a,b) Fixation probabilities
as a function of the growth di↵erence �� for various �d values with: d1 = 1 in (a); d2 = 1
in (b)). Red lines, S1; blue lines, S2. (c) The density of S2 fixation times for di↵erent ��

values with d1 = 1, d2 = 10. Inset shows the corresponding densities of S1. (d) Distribution
of S1 individuals at fixation with d1 = 1, d2 = 10 and varying ��. Inset shows d1 = d2 = 1
case (no demographic noise). All computations carried out with r = 200 (20301 states)
ensuring that "200 < 10�8. Birth rates: b1 = 1 +��+ d1 and b2 = 1 + d2.

As shown in Corollary 3.1, the bounds µr

S

(x1, 0) and µ

r

S

(0, x2) increase monotonically
in r and converge—in our numerics, the approximations are visually indistinguishable
for r > 60. Note that the exit location distributions are wide and not clearly peaked
around the intersections of Dc

1 and Dc

2 with the deterministic manifold. Indeed, the
S1-exit location distribution peaks at smaller values than deterministically plausible
due to higher demographic noise along the direction of S2 disturbing the dynamics
away from the deterministic stable manifold.

To characterise the time at which either fixation occurs, we compute bounds
on the fixation time densities. The fixation time of S1 (resp. S2) is the exit time
conditioned on S1 (resp. S2) fixing and its density is given by

(4.7) µ

T

(t|Dc

i

) :=
µ(t,Dc

i

)

µ

S

(Dc

i

)
� µ

r(t,Dc

i

)

µ

r

S

(Dc

i

) + "

r

=: µr

T

(t|Dc

i

) 8i = 1, 2.

Fig. 4.3(c) shows that the bounds on the conditional densities are monotonically
increasing, whereas the inset shows that the bound of the approximation error

||µ
T

(·|Dc

i

)� µ

r

T

(·|Dc

i

)||  "

r

µ

r

S

(Dc

i

) + "

r

.

decreases with r.
The e↵ects of demographic noise. Using ETFSP with a large truncation, we in-

vestigate how the behaviour of the model depends on the growth rate di↵erence ��

and the death rate di↵erence �d, a measure of demographic noise. In the absence
of demographic noise (�d = 0), as in the deterministic case, the fixation of S1 is
favoured if �� > 0, and the converse is true if �� < 0 (Fig. 4.4(a)). However, an
increase in the demographic noise of S2 (�d < 0) leads to a higher fixation probability
of S1. If the demographic noise is large enough, the fixation of S1 becomes favoured
even if �� < 0. Conversely, Fig. 4.4(b) shows that increasing the demographic noise
of S1 (�d > 0) favours fixation of S2 over S1 even if �� > 0.

Next, we focus on the case �� > 0, �d < 0 where the most likely outcome is
consistent with the deterministic case (i.e., S1 is more likely to fix). Fig. 4.4(c) shows
the density of fixation times computed using (4.7) for S1 and S2 as a function of ��.
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The density of fixation times becomes narrower with increasing �� (inset) indicating
that large growth rate di↵erences attenuate the stochasticity. Despite the fixation of
S2 being less likely than that of S1, the time required for this event decreases with
��: the mode of the conditional distribution µ

T

(t|Dc

2) shifts to smaller times.
Fig. 4.4(d) shows that the distribution of S1 individuals at fixation is bimodal for

moderate values of �� and remains broad for larger values. This is the result of strong
demographic fluctuations in the direction of S2 such that fixation of S1 can occur at
small population size. If no demographic noise is present (�d = 0), the distributions
are unimodal (inset) and considerably narrower regardless of the value of ��. In
summary, demographic noise significantly alters the dynamics of small populations
and can even reverse the direction of fixation predicted by deterministic models.

5. Discussion. In this paper, we have introduced and characterised the ETFSP
scheme, which yields converging approximations of the exit distribution and occu-
pation measure associated with the exit from a domain of continuous-time Markov
chains. The ETFSP scheme consists of solving the system of coupled linear ODEs
(1.6)–(1.7) and yields approximations of the desired measures. The total variation
distance between the exit distribution and its approximation is bounded by one mi-
nus the mass of the approximation. Hence the quality of the approximation can be
evaluated with no extra e↵ort than that required for its computation.

We have considered minimal chains, i.e., those that do not explode or those that
are killed o↵ after exploding. A distinction arises for non-minimal chains, which are
re-initialised after exploding [9, 22, 50]. In this case, the FSP and ETFSP still yield
monotonically increasing lower bounds on the relevant measures and the computable
error bounds hold identically. However, they do not converge to the measures associ-
ated with non-minimal chains but to those associated with minimal chains (Theorems
1.1 and 2.5). The details pertinent to non-minimal chains are left as future work.
Although we have not discussed time-inhomogeneous chains relevant in some applica-
tions [57, 13], we anticipate that both the ETFSP and FSP schemes apply identically
when the rate matrix Q is replaced with its time-inhomogeneous analogue.

There are several issues worth considering for the application of the ETFSP
scheme. Chief among them is the fact that the number of states often grows quickly
with the desired accuracy resulting in large systems of ODEs. Resource-e�cient im-
plementations of the FSP scheme have been developed to tackle this issue and can
be adapted to the ETFSP setting (see [16] and references therein). To do so, notice
that (1.6) is the set of ODEs obtained by applying the FSP scheme to (2.10) with
D replacing S. In other words, ⌫r(t, ·) is �Dr exp(tQDr ), where �Dr and QDr are re-
strictions to the truncated domain D

r

. The corresponding approximation of the exit
distribution is then obtained by rewriting (1.7) as

(5.1) µ

r(t, x) =
X

y2Dr

⌫

r(t, y)q(y, x), 8x 2 S
r

\Dc

.

The rapid growth in the number of states can also be mitigated by guiding the trun-
cation choice using simulation-based criteria [46, 52], moment bounds and Markov’s
inequality to obtain a priori error bounds [35, 36], or other state space exploration
techniques (see [15, 16] and references therein). For cases where there are too many
important states for ETFSP to handle, Galerkin methods [19, 18, 32] could be adapted
to the exit time setting using Theorem 2.6.

Solving (1.6)–(1.7) numerically introduces an additional source of error [44]. A
simple way to control this error is to apply randomisation techniques [27, 16] on (1.7)
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to obtain lower bounds ⌫r, and using (5.1) to compute lower bounds on µ

r. The error
bounds in Theorem 1.1(iii) hold if µr and ⌫

r are replaced with their lower bounds.
Numerically solving the ODEs (1.6) to obtain ⌫

r and performing the matrix-
vector multiplication in (5.1) often leads to an accumulation of errors in µ

r. We
circumvented this issue using an adaptive ODE solver [30] to solve the joint system
(1.6)–(1.7), hence ensuring that the errors of both ⌫

r and µ

r are taken into account
by the solver. A promising alternative here is to apply Krylov methods of the type in
[4] to this joint system of ODEs.

Lastly, we did not address how to bound the approximation error of the occupa-
tion measure in practice. As shown in Theorem 1.1, the approximation error (1.15)
depends on E [⌧ ^ T1], which is bounded from above by the mean exit time E [⌧ ]. For
a broad class of chains (those with ‘rational rate matrices’), the mean exit time can
itself be bounded using linear or semidefinite programming approaches [28, 35]. For
more general chains, one can employ Foster-Lyapunov criteria [40, 35].

In summary, the ETFSP computes converging approximations of the exit distri-
bution and occupation measure with controlled errors. As demonstrated in Section 4,
such highly accurate approximations can provide valuable insights into the dynamics
of biochemical networks and interacting populations. Although our examples were
biological, computing these measures is important to other fields, for instance, to
quantify customer waiting times [38, 39], modelling computer-communication and
transaction processing systems [34], computing reliability measures of complex sys-
tems [14], or in model checking [43].
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Appendix A. The Gillespie Algorithm and the proof of Lemma 2.3.

Given an initial condition Z, we construct our Markov chain X recursively by running

Algorithm A.1 below commonly known as the Gillespie Algorithm or the stochastic

simulation algorithm. The name of the algorithm itself stems from [3] and its origins

trace back to [2, 4]. In particular, the algorithm constructs the jump times {T
n

}
n2N

at which transitions occur and the jump chain Y := {Y
n

}
n2N.

Algorithm A.1 The Gillespie Algorithm on S = {x
1

, x

2

, x

3

. . . }
1: Y

0

:= Z, T

0

:= 0

2: for n = 1, 2, . . . do

3: sample U

n

⇠ uni((0, 1)) independently of {Z, ⇠
1

, . . . , ⇠

n�1

, U

1

, . . . , U

n�1

}
4: sample ⇠

n

⇠ exp(1) independently of {Z, ⇠
1

, . . . , ⇠

n�1

, U

1

, . . . , U

n

}
5: if q(Y

n�1

, Y

n�1

) 6= 0 then

6: T

n

:= T

n�1

� ⇠

n

/q(Y

n�1

, Y

n�1

)

7: else

8: T

n

:= T

n�1

+ ⇠

n

9: end if

10: i := 0

11: while U

n

>

P
i

j=0

⇡(Y

n�1

, x

j

) do

12: i := i+ 1

13: end while

14: Y

n

:= x

i

15: end for

In this paper, we fix an underlying measurable space (⌦,F) on which Z, ⇠

1

, ⇠

2

,

. . . , U

1

, U

2

, . . . appearing in Algorithm A.1 are defined and a probability measure P
on (⌦,F) such that, under P, the initial condition Z has law �, the random variable

U

n

is uniformly distributed on (0, 1) for each n 2 Z
+

, the random variable ⇠

n

is

exponentially distributed with unit mean for each n 2 Z
+

, and the random variables

Z, ⇠

1

, ⇠

2

, . . . , U

1

, U

2

, . . . are independent. Formally, such a construction can be

carried out using Theorems 12.2 and 26.1 in [5].

Proof of Lemma 2.3. Let

¯

⇧ denote the one-step matrix obtained by replacing

Q with

¯

Q in (2.2). To construct

¯

X we run Algorithm A.1 employing the same Z,

{⇠
n

}1
n=1

, and {U
n

}1
n=1

as for X but with

¯

Q and

¯

⇧ replacing Q and ⇧ to obtain the

chain’s jump times { ¯T
n

}
n2N and jump chain

¯

Y := { ¯Y
n

}
n2N and then we apply (2.3)

with { ¯T
n

}
n2N and

¯

Y replacing { ¯T
n

}
n2N and Y . Because the rate matrices coincide

on D, (2.2) implies that the jump matrices also coincide on D:

⇡(x, y) = ⇡̄(x, y) 8x 2 D, y 2 S.

Algorithm A.1 and the above imply that

(A.1)

¯

Y

n+1

(!) = Y

n+1

(!) for all ! 2 ⌦ such that

¯

Y

n

(!) = Y

n

(!) 2 D.

Due to the definition of the exit times of the jump chains, we have that

� = 1 · 1{Y02D,Y12D,... } +

1X

k=1

k1{Y02D,...,Yk�12D,Yk 62D},

�̄ = 1 · 1{ ¯

Y02D,

¯

Y12D,... } +

1X

k=1

k1{ ¯

Y02D,...,

¯

Yk�12D,

¯

Yk 62D}.
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Because Y

0

= Z =

¯

Y

0

, combining the above expression with (A.1) tells us that

�(!) = �̄(!) for each ! 2 ⌦. Since �(!) � k only if

Y

0

(!) 2 D, Y

k

(!) 2 D, . . . , Y

k�1

(!) 2 D,

the first equation in (2.7) also follows from (A.1). Using once again the fact that the

rate matrices coincide on D and the definition of the jump times in Algorithm A.1,

the second equation in (2.7) follows from the first. Lemma 2.2 then implies the second

and third equations in (2.5). Putting (2.5), (2.7), and the definition of the chains in

(2.3) together we obtain (2.6).

Appendix B. The proof of the theoretical properties of the FSP scheme.

In the following proof, let X

r

be the auxiliary chain introduced immediately after

Theorem 2.5 and Y

r

:= {Y r

n

}
n2N, {T r

n

}
n2N, and T

r

1 be its jump chain, jump times,

and explosion time.

Proof of Theorem 2.5. Substituting Q with Q

r

in (2.10) and comparing with

(2.11), it follows that

(B.1) p

r

t

(x) = P ({Xr

t

= x, t < T

r

1}) , 8x 2 S
r

.

(i) Because Q and Q

r

coincide on S
r

, Lemma 2.3 tells us that both X and X

r

leave for the first time S
r

at the same moment (namely, ⌧

r

). Similarly, the time of exit

from S
r

for the jump chains Y and Y

r

coincides and we denote it by �

r

. Replacing

Q by Q

r

in (2.2), we see that the one-step matrix ⇧

r

:= (⇡

r

(x, y))

x,y2S is such that

⇡

r

(x, ·) = 1

x

(·) for each x 62 S
r

. For this reason, Algorithm A.1 implies that for any

! 2 ⌦

Y

r

n

(!) = x 62 S
r

) Y

r

n+m

(!) = x 8m 2 N.
Due to the definition of �

r

, we have that Y

r

�r(!)

(!) does not belong to S
r

if �

r

(!) is

finite and so

(B.2) Y

r

n

(!) = Y

r

�r(!)

(!) 62 S
r

8n � �

r

(!), if �

r

(!) < 1,

formalising the notion that X

r

gets stuck in the first state in enters once it leaves the

truncation. The above implies that {Y r

n

= x} = {Y r

n

= x, n < �

r

} for every x 2 S
r

.

Using the above,

{Y r

n

= x, T

r

n

 t < T

r

n+1

} = {Y r

n

= x, T

r

n

 t < T

r

n+1

, n < �

r

}
= {Y r+1

n

= x, T

r+1

n

 t < T

r+1

n+1

, n < �

r

} ✓ {Y r+1

n

= x, T

r+1

n

 t < T

r+1

n+1

},

for all x 2 S
r

, where the second equality follows from (2.7) in Lemma 2.3 after

noting that the definition of Q

r

in (2.14) remains unchanged if we replace q(x, y) with

q

r+1

(x, y). Taking the union over n 2 N, we obtain

{Xr

t

= x, t < T

r

1} =

1[

n=0

{Y r

n

= x, T

r

n

 t < T

r

n+1

}

✓
1[

n=0

{Y r+1

n

= x, T

r+1

n

 t < T

r+1

n+1

} = {Xr+1

t

= x, t < T

r+1

1 },

for all x 2 S
r

. Taking expectations and applying Theorem 2.4 yields p

r

t

(x)  p

r+1

t

(x)

for each x 2 S
r

. Replacing X

r+1

with X in this argument, shows that p

r

t

(x)  · · · 
p

t

(x) for each x 2 S
r

.
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(ii) Theorem 2.6 and (1.4) tell us that

P ({⌧
r

 t}) =
X

x 62Sr

0

@
�(x) +

Z
t

0

0

@
X

y2Sr

p

r

s

(y)q(y, x)

1

A
ds

1

A
.

Theorem 2.4 and (B.1) then imply that

P ({⌧
r

 t}) = P ({Xr

t

62 S
r

, t < T1}) = P ({t < T

r

1})� P ({Xr

t

2 S
r

, t < T1}) .

Because S
r

is finite, (2.14) implies that x 7! q

r

x

is a bounded function. Using the

definition of T

r

1 and the law of large numbers we have that X

r

is non-explosive:

T

r

1 =

1X

n=0

✓
1{qrY r

n
=0} �

1{qr(Y r
n ,Y

r
n ) 6=0}

q

r

(Y

r

n

, Y

r

n

)

◆
⇠

n+1

(B.3)

�
✓
1 ^ min

x2Sr

1

�q(x, x)

◆ 1X

n=0

⇠

n+1

= 1, almost surely.

For this reason, using (B.1) we have that

p

r

t

(S) = p

r

t

(S
r

) = P ({Xr

t

2 S
r

, t < T1}) = 1� P ({⌧
r

 t}) = P ({t < ⌧

r

}) .

(iii) The equality and inequality follow from (i)–(ii) and the fact that the total

variation norm of an unsigned measure is its mass. The function t 7! p

t

(S) is non-

increasing because p

t

(S) = P ({t < T1}). Theorem 5 of Chapter II.18 in [1] implies

that p

t

(S) < 1 for a given t > 0 if and only if p

t

(S) < 1 for all t > 0. These facts

and the monotone convergence theorem imply that p

t

(S) < 1 for any given t > 0 if

and only if P ({T1 = 1}) < 1. For this reason, the inequality is sharp if and only if

P ({T1 = 1}) = 1.

(iv) This is an immediate consequence of (ii)–(iii) and the fact that {⌧
r

}
r2N is

an increasing sequence.

(v) The monotone convergence theorem and (iii) imply that

lim

r!1
||p

t

� p

r

t

||
TV

= P ({t < T1})� lim

r!1
P({t < ⌧

r

}).

The claim then follows from Lemma 2.1.

Appendix C. The proof of the analytical characterisation of the exit

distribution and occupation measure. The proof of Theorem 2.6 relies on the

auxiliary chain

ˆ

X defined immediately after the theorem’s statement. In what follows,

let

ˆ

Y := { ˆY
n

}
n2N, { ˆT

n

}
n2N, and

ˆ

T1 to denote the jump chain, jump times, and

explosion time of

ˆ

X. The theorem’s proof builds on the following simple lemma.

Lemma C.1. The chain X does not explode before first leaving the domain if and

only if

ˆ

X does not explode:

1{⌧T1} = 1{ ˆ

T1=1} P-almost surely.

Proof. By its definition (1.1), the exit time is no greater than the explosion time

if and only if the chain exits the domain before any explosion occurs or the chain

neither exits the domain nor explodes:

{⌧  T1} = {⌧ < T1} [ {⌧ = T1 = 1} = {⌧ < 1} [ {⌧ = T1 = 1}.
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Because these events are disjoint, it is enough to argue that

(C.1) 1{⌧<1} = 1{⌧<1,

ˆ

T1=1}, 1{⌧=T1=1} = 1{⌧= ˆ

T1=1}, P-almost surely.

Because the jump times of both chains agree as long as no exit occurs, see (2.7), we

have that

T1(!) = lim

k!1
T

k

(!) = lim

k!1
ˆ

T

k

(!) =

ˆ

T1(!) 8! 2 ⌦ : �(!) = 1.

where � denotes the time-step (2.4) that Y and

ˆ

Y simultaneously (Lemma 2.3) leave

the domain. The second equation in (C.1) then follows from Lemma 2.2. To prove

the first equation, notice that an analogous argument as that behind (B.2) shows that

(C.2)

ˆ

Y

k

(!) =

ˆ

Y

�(!)

(!) 8k � �(!), if �(!) < 1.

Combining the above with the law of large numbers, we have that

1{�=l} ˆT1 = 1{�=l}

1X

k=0

(

ˆ

T

k+1

� ˆ

T

k

) � 1{�=l}

1X

k=l

(

ˆ

T

k+1

� ˆ

T

k

)

� 1{�=l}

1X

k=l

⇠

k+1

= 1{�=l} ·1 P-almost surely,

for any l 2 N. Summing the above over l 2 N, we find that

1{�<1} ˆT1 � 1{�<1} ·1 P-almost surely.

The first equation in (C.1) then follows from Lemma 2.2.

We are now in a position prove our characterisation of µ and ⌫.

Proof of Theorem 2.5. We begin with the occupation measure. Lemma 2.3 im-

plies that

Z
t^⌧^T1

0

1

x

(X

s

)ds =

Z
t^⌧^ ˆ

T1

0

1

x

(

ˆ

X

s

)ds(C.3)

= 1{⌧t}

Z
⌧^ ˆ

T1

0

1

x

(

ˆ

X

s

)ds+ 1{⌧>t}

Z
t^ ˆ

T1

0

1

x

(

ˆ

X

s

)ds.

If we can argue that

(C.4) 1{⌧t}

Z
t^ ˆ

T1

⌧

1

x

(

ˆ

X

s

)ds = 0 8x 2 D,

then adding the left-hand side of (C.4) to the right-hand side of (C.3), taking expec-

tations, using Tonelli’s theorem, and applying Theorem 2.4 to

ˆ

X yields the charac-

terisation of the occupation measure. The above follows from the fact that

ˆ

X hits

an absorbing state as soon as it leaves the domain. Formally, Lemmas 2.2–2.3 imply

that

{⌧  s,

ˆ

T

k

 s <

ˆ

T

k+1

} = { ˆT
max{�,k}  s <

ˆ

T

k+1

} = {�  k,

ˆ

T

k

 s <

ˆ

T

k+1

}
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for all k 2 N. The above and (C.2) tell us that

ˆ

X

s

(!) =

1X

k=0

1{ ˆ

Tks<

ˆ

Tk+1}(!)
ˆ

Y

k

(!) =

1X

k=�(!)

1{ ˆ

Tks<

ˆ

Tk+1}(!)
ˆ

Y

k

(!)

= 1{s� ˆ

T�}(!)
ˆ

Y

�(!)

=

ˆ

Y

�(!)

(!) = X

⌧(!)

(!), 8(s,!) : ⌧(!)  s <

ˆ

T1(!),(C.5)

where the last equality follows from Lemmas 2.2–2.3. By definition, the paths of X

are cádlág (with respect to the discrete topology on S) implying that X

⌧

lies outside

of the domain and (C.4) follows from (C.5).

For the characterisation of the exit distribution, fix any x 62 D and note that

µ([0, t], x) = P({X
⌧

= x, ⌧  t}) = P({X
⌧

= x, ⌧  t, ⌧  T1})
= P({X

⌧

= x, ⌧  t,

ˆ

T1 = 1}) = P({ ˆ

X

⌧

= x, ⌧  t <

ˆ

T1,

ˆ

T1 = 1})
= P({ ˆ

X

t

= x, ⌧  t <

ˆ

T1,

ˆ

T1 = 1}) = P({ ˆ

X

t

= x, ⌧  t <

ˆ

T1})
= P({ ˆ

X

t

= x, t <

ˆ

T1}) = p̂

t

(x).

The first equality follows from the definition of µ, the second that of ⌧ , the third

from Lemma C.1, the fourth from Lemma 2.3, the fifth from (C.5), the sixth from

Lemma C.1, the seventh from the fact that

ˆ

X

t

lies outside of the domain only if its

exit time is no greater than t and (2.5), and the eighth from Theorem 2.4. Exploiting

the continuity of t 7! p̂

t

(x) (Theorem 2.4) and applying the monotone convergence

theorem to µ(·, x) implies that

µ([0, t), x) = lim

n!1
µ([0, t(1� 1/n)], x) = lim

n!1
p̂

t(1�1/n)

(x) = p̂

t

(x), 8x 62 D,

thus completing the proof of the first equation in (2.17).
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