2,286 research outputs found
On inward motion of the magnetopause preceding a substorm
Magnetopause inward motion preceding magnetic storms observed by means of OGO-E magnetomete
Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates
We investigate the disorder-induced localization transition in Bose-Einstein
condensates for the Anderson and Aubry-Andre models in the non-interacting
limit using exact diagonalization. We show that, in addition to the standard
superfluid fraction, other tools such as the entanglement and fidelity can
provide clear signatures of the transition. Interestingly, the fidelity
exhibits good sensitivity even for small lattices. Effects of the system size
on these quantities are analyzed in detail, including the determination of a
finite-size-scaling law for the critical disorder strength in the case of the
Anderson model.Comment: 15 pages, 7 figure
Surface spin-flop phases and bulk discommensurations in antiferromagnets
Phase diagrams as a function of anisotropy D and magnetic field H are
obtained for discommensurations and surface states for a model antiferromagnet
in which is parallel to the easy axis. The surface spin-flop phase exists
for all . We show that there is a region where the penetration length of the
surface spin-flop phase diverges. Introducing a discommensuration of even
length then becomes preferable to reconstructing the surface. The results are
used to clarify and correct previous studies in which discommensurations have
been confused with genuine surface spin-flop states.Comment: 4 pages, RevTeX, 2 Postscript figure
Renormalization and Quantum Scaling of Frenkel-Kontorova Models
We generalise the classical Transition by Breaking of Analyticity for the
class of Frenkel-Kontorova models studied by Aubry and others to non-zero
Planck's constant and temperature. This analysis is based on the study of a
renormalization operator for the case of irrational mean spacing using
Feynman's functional integral approach. We show how existing classical results
extend to the quantum regime. In particular we extend MacKay's renormalization
approach for the classical statistical mechanics to deduce scaling of low
frequency effects and quantum effects. Our approach extends the phenomenon of
hierarchical melting studied by Vallet, Schilling and Aubry to the quantum
regime.Comment: 14 pages, 1 figure, submitted to J.Stat.Phy
Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain
We study numerically and analytically the classical one-dimensional
Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon
gap. Our results show the existence of exponentially many static equilibrium
configurations which are exponentially close to the energy of the ground state.
The energies of these configurations form a fractal quasi-degenerate band
structure which is described on the basis of elementary excitations. Contrary
to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure
Enhanced soliton transport in quasi-periodic lattices with short-range aperiodicity
We study linear transmission and nonlinear soliton transport through
quasi-periodic structures, which profiles are described by multiple modulation
frequencies. We show that resonant scattering at mixed-frequency resonances
limits transmission efficiency of localized wave packets, leading to radiation
and possible trapping of solitons. We obtain an explicit analytical expression
for optimal quasi-periodic lattice profiles, where additional aperiodic
modulations suppress mixed-frequency resonances, resulting in dramatic
enhancement of soliton mobility. Our results can be applied to the design of
photonic waveguide structures, and arrays of magnetic micro-traps for atomic
Bose-Einstein condensates.Comment: 4 pages, 4 figure
Energy transmission in the forbidden bandgap of a nonlinear chain
A nonlinear chain driven by one end may propagate energy in the forbidden
band gap by means of nonlinear modes. For harmonic driving at a given
frequency, the process ocurs at a threshold amplitude by sudden large energy
flow, that we call nonlinear supratransmission. The bifurcation of energy
transmission is demonstrated numerically and experimentally on the chain of
coupled pendula (sine-Gordon and nonlinear Klein-Gordon equations) and
sustained by an extremely simple theory.Comment: LaTex file, 6 figures, published in Phys Rev Lett 89 (2002) 13410
Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method
We present a method of measuring galaxy power spectrum based on the
multiresolution analysis of the discrete wavelet transformation (DWT). Since
the DWT representation has strong capability of suppressing the off-diagonal
components of the covariance for selfsimilar clustering, the DWT covariance for
popular models of the cold dark matter cosmogony generally is diagonal, or
(scale)-diagonal in the scale range, in which the second scale-scale
correlations are weak. In this range, the DWT covariance gives a lossless
estimation of the power spectrum, which is equal to the corresponding Fourier
power spectrum banded with a logarithmical scaling. In the scale range, in
which the scale-scale correlation is significant, the accuracy of a power
spectrum detection depends on the scale-scale or band-band correlations. This
is, for a precision measurements of the power spectrum, a measurement of the
scale-scale or band-band correlations is needed. We show that the DWT
covariance can be employed to measuring both the band-power spectrum and second
order scale-scale correlation. We also present the DWT algorithm of the binning
and Poisson sampling with real observational data. We show that the alias
effect appeared in usual binning schemes can exactly be eliminated by the DWT
binning. Since Poisson process possesses diagonal covariance in the DWT
representation, the Poisson sampling and selection effects on the power
spectrum and second order scale-scale correlation detection are suppressed into
minimum. Moreover, the effect of the non-Gaussian features of the Poisson
sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap
- âŠ