861 research outputs found

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap.

    Get PDF
    Penning traps offer unique possibilities for storing, manipulating and investigating charged particles with high sensitivity and accuracy. The widespread applications of Penning traps in physics and chemistry comprise e.g. mass spectrometry, laser spectroscopy, measurements of electronic and nuclear magnetic moments, chemical sample analysis and reaction studies. We have developed a method, based on the Green's function approach, which allows for the analytical calculation of the electrostatic properties of a Penning trap with arbitrary electrodes. The ansatz features an extension of Dirichlet's problem to nontrivial geometries and leads to an analytical solution of the Laplace equation. As an example we discuss the toroidal hybrid Penning trap designed for our planned measurements of the magnetic moment of the (anti)proton. As in the case of cylindrical Penning traps, it is possible to optimize the properties of the electric trapping fields, which is mandatory for high-precision experiments with single charged particles. Of particular interest are the anharmonicity compensation, orthogonality and optimum adjustment of frequency shifts by the continuous SternGerlach effect in a quantum jump spectrometer. The mathematical formalism developed goes beyond the mere design of novel Penning traps and has potential applications in other fields of physics and engineering

    g factor of Li-like ions with nonzero nuclear spin

    Full text link
    The fully relativistic theory of the g factor of Li-like ions with nonzero nuclear spin is considered for the (1s)^2 2s state. The magnetic-dipole hyperfine-interaction correction to the atomic g factor is calculated including the one-electron contributions as well as the interelectronic-interaction effects of order 1/Z. This correction is combined with the interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections to obtain high-precision theoretical values for the g factor of Li-like ions with nonzero nuclear spin. The results can be used for a precise determination of nuclear magnetic moments from g factor experiments.Comment: 20 pages, 5 figure

    A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    Full text link
    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.Comment: Contribution to the special issue on "Trapped Ions" in "Applied Physics B

    Patient symptoms and experience following COVID-19: results from a UK-wide survey

    Get PDF
    Objectives: To investigate the experience of people who continue to be unwell after acute COVID-19, often referred to as ‘long COVID’, both in terms of their symptoms and their interactions with healthcare. Design: We conducted a mixed-methods analysis of responses to a survey accessed through a UK online post-COVID support and information hub between April and December 2020 about people’s experiences after having acute COVID-19. Participants: 3290 respondents, 78% female 92.1% white ethnicity and median age range 45-54 years; 12.7% had been hospitalised. 494(16.5%) completed the survey between 4 and 8 weeks of the onset of their symptoms, 641(21.4%) between 8 and 12 weeks and 1865(62.1%) >12 weeks after. Results: The ongoing symptoms most frequently reported were; breathing problems (92.1%), fatigue (83.3%), muscle weakness or joint stiffness (50.6%), sleep disturbances (46.2%), problems with mental abilities (45.9%) changes in mood, including anxiety and depression (43.1%) and cough (42.3%). Symptoms did not appear to be related to the severity of the acute illness or to the presence of pre-existing medical conditions. Analysis of free text responses revealed three main themes (1) Experience of living with COVID-19 – physical and psychological symptoms that fluctuate unpredictably; (2) Interactions with healthcare that were unsatisfactory; (3) Implications for the future – their own condition, society and the healthcare system, and the need for research Conclusion: Consideration of patient perspective and experiences will assist in the planning of services to address problems persisting in people who remain symptomatic after the acute phase of COVID-19

    Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    Full text link
    The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.Comment: 8 pages, 7 figures, talk presented at 7th International School-Seminar on Heavy-Ion Physics, May 27 - June 1, 2002, Dubna, Russi

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    Effects of state dependent correlations on nucleon density and momentum distributions

    Full text link
    The proton momentum and density distributions of closed shell nuclei are calculated within a model treating short--range correlations up to first order in the cluster expansion. The validity of the model is verified by comparing the results obtained with purely scalar correlations with those produced by finite nuclei Fermi Hypernetted Chain calculations. State dependent correlations are used to calculate momentum and density distributions of 12C, 16O, 40Ca, and 48Ca, and the effects of their tensor components are studied.Comment: 16 pages, latex, 8 figures, accepted for publication in Phys. Rev.

    El Mañana: Año II Número 9 - (09/01/29)

    Get PDF
    There is no consensus on the treatment of multifocal primary cutaneous anaplastic large cell lymphoma (C-ALCL). Radiotherapy (RT) and methotrexate (MTX) are the current treatment options, but their efficacy is unknown. Recently, targeted therapies showed promising results in C-ALCL, and may therefore be an attractive first choice of treatment. To assess the efficacy of conventional treatment strategies for patients with multifocal C-ALCL, and to define which patients may require novel targeted therapies. In this multicenter study, treatment was evaluated in patients initially presenting (n=24) or relapsing with multifocal C-ALCL (n=17; 23 relapses). Distinction was made between cases with ≤ 5 (n=36) and >5 lesions (n=11). Treatments most commonly used were radiotherapy (n=21), systemic chemotherapy (n=9) and low-dose methotrexate (MTX; n=7) with complete response rates of 100%, 78% and 43%, respectively, and an overall response rate of 100%, 100%, and 57%, respectively. Four patients showed a complete spontaneous regression. Sixteen of 24 patients (67%) first presenting with multifocal C-ALCL relapsed, including all five patients initially treated with CHOP. Compared with patients presenting with 2-5 skin lesions, patients presenting with >5 lesions had a higher chance of developing extracutaneous relapse (56 vs 20%) and more often died of lymphoma (44% vs 7%). Patients with ≤5 lesions should be treated with low-dose RT (2x4 Gy). Maintenance low-dose MTX (20 mg/week) is a suitable option in patients with >5 lesions. Targeted therapies may be considered in rare patients refractory to MTX or patients developing extracutaneous disease. This article is protected by copyright. All rights reserve

    Spectral analysis on infinite Sierpinski fractafolds

    Full text link
    A fractafold, a space that is locally modeled on a specified fractal, is the fractal equivalent of a manifold. For compact fractafolds based on the Sierpinski gasket, it was shown by the first author how to compute the discrete spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian. A similar problem was solved by the second author for the case of infinite blowups of a Sierpinski gasket, where spectrum is pure point of infinite multiplicity. Both works used the method of spectral decimations to obtain explicit description of the eigenvalues and eigenfunctions. In this paper we combine the ideas from these earlier works to obtain a description of the spectral resolution of the Laplacian for noncompact fractafolds. Our main abstract results enable us to obtain a completely explicit description of the spectral resolution of the fractafold Laplacian. For some specific examples we turn the spectral resolution into a "Plancherel formula". We also present such a formula for the graph Laplacian on the 3-regular tree, which appears to be a new result of independent interest. In the end we discuss periodic fractafolds and fractal fields
    • …
    corecore