199 research outputs found

    Magnetic characterization of Fe, Ni, Co nanoparticles dispersed in phyllosilicate type silicon oxide

    No full text
    International audienceWe present the magnetic properties of silica-supported metal (Fe,catalyst) nanoparticles synthesized by precipitation of metal nitrate in ammonia-based medium. Our goal is the study of possible metal-support interactions in the nanoporous catalyst. The temperature dependence of the magnetization for all samples display spin-glass like behavior below c.a. 11-12 K, with clear Curie-Weiss dependence in the high-temperature regime. Spin-glass-like behavior was inferred from dynamic AC susceptibility data after analyzing the frequency-dependence of the in-phase component χ'(f) by the expression W = ΔTf/[Tf Δlog(f)] = 3.0 × 10−3. We found that the magnetic behavior of the catalyst is drastically affected by the existence of interactions between the metal and the support

    Coenzyme Q10 and Cardiovascular Diseases

    Get PDF
    Coenzyme Q10 (CoQ10), which plays a key role in the electron transport chain by providing an adequate, efficient supply of energy, has another relevant function as an antioxidant, acting in mitochondria, other cell compartments, and plasma lipoproteins. CoQ10 deficiency is present in chronic and age-related diseases. In particular, in cardiovascular diseases (CVDs), there is a reduced bioavailability of CoQ10 since statins, one of the most common lipid-lowering drugs, inhibit the common pathway shared by CoQ10 endogenous biosynthesis and cholesterol biosynthesis. Different clinical trials have analyzed the effect of CoQ10 supplementation as a treatment to ameliorate these deficiencies in the context of CVDs. In this review, we focus on recent advances in CoQ10 supplementation and the clinical implications in the reduction of cardiovascular risk factors (such as lipid and lipoprotein levels, blood pressure, or endothelial function) as well as in a therapeutic approach for the reduction of the clinical complications of CVD

    Adjustable near-infrared fluorescence lifetime emission of biocompatible rare-earth-doped nanoparticles for in vivo multiplexing

    Full text link
    Rare-earth-doped inorganic nanocrystals are an important class of nanoparticles for bioimaging applications due to the facility of providing them with tailored emissions in the visible and near-infrared regions of the electromagnetic spectrum. Recently it has become of interest to engineer the dopant composition of these materials in order to enable multiplexed lifetime imaging for autofluorescence-free in vivo bioimaging. Herein we report a simple approach to obtain different fluorescence lifetimes for the Yb3+emission (2F5/2 → 2F7/2) in Nd3+, Yb3+, Tm3+ co-doped NaGdF4 nanoparticles by only changing their crystal size while keeping their hydrodynamic diameter constant. This allowed straightforward transformation of infrared images in the time domain into lifetime maps. The particles were then deployed as in vivo contrast agents for near-infrared imaging in a mouse demonstrating their multiplexing capabilityThis work was financed by the Spanish Ministerio de Ciencia e InovaciĂłn under projects PID2019-106211RB-I00 and PID2020-118878RB-I00, by the Instituto de Salud Carlos III (PI19/00565), by the Comunidad AutĂłnoma de Madrid (CAM) S2017/ BMD3867 RENIM-CM grant and co-financed by the European structural and investment fund. Additional funding was provided by the European Union Horizon 2020 FETOpen project NanoTBTech (801305), the CAM young investigator project SI3/PJI/2021-00211 the FundaciĂłn para la InvestigaciĂłn BiomĂ©dica del Hospital Universitario RamĂłn y Cajal project IMP21_A4 (2021/0427), and also by COST action CA17140. R. M. acknowledges the support of the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie Grant Agreement No. 797945 (LANTERNS). J.Y. acknowledges the support from the China Scholarship Council (CSC File No.201704910867

    Functional and Immunological Relevance of Anaplasma marginale Major Surface Protein 1a Sequence and Structural Analysis.

    Get PDF
    Bovine anaplasmosis is caused by cattle infection with the tick-borne bacterium, Anaplasma marginale. The major surface protein 1a (MSP1a) has been used as a genetic marker for identifying A. marginale strains based on N-terminal tandem repeats and a 5'-UTR microsatellite located in the msp1a gene. The MSP1a tandem repeats contain immune relevant elements and functional domains that bind to bovine erythrocytes and tick cells, thus providing information about the evolution of host-pathogen and vector-pathogen interactions. Here we propose one nomenclature for A. marginale strain classification based on MSP1a. All tandem repeats among A. marginale strains were classified and the amino acid variability/frequency in each position was determined. The sequence variation at immunodominant B cell epitopes was determined and the secondary (2D) structure of the tandem repeats was modeled. A total of 224 different strains of A. marginale were classified, showing 11 genotypes based on the 5'-UTR microsatellite and 193 different tandem repeats with high amino acid variability per position. Our results showed phylogenetic correlation between MSP1a sequence, secondary structure, B-cell epitope composition and tick transmissibility of A. marginale strains. The analysis of MSP1a sequences provides relevant information about the biology of A. marginale to design vaccines with a cross-protective capacity based on MSP1a B-cell epitopes

    Muscle Physiology Changes Induced by Every Other Day Feeding and Endurance Exercise in Mice: Effects on Physical Performance

    Get PDF
    Every other day feeding (EOD) and exercise induce changes in cell metabolism. The aim of the present work was to know if both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic effects on muscle. Male OF-1 mice were fed either ad libitum (AL) or under EOD. After 18 weeks under EOD, animals were also trained by using a treadmill for another 6 weeks and then analyzed for physical activity. Both, EOD and endurance exercise increased the resistance of animals to extenuating activity and improved motor coordination. Among the groups that showed the highest performance, AL and EOD trained animals, ALT and EODT respectively, only the EODT group was able to increase glucose and triglycerides levels in plasma after extenuating exercise. No high effects on mitochondrial respiratory chain activities or protein levels neither on coenzyme Q levels were found in gastrocnemius muscle. However, exercise and EOD did increase ÎČ-oxidation activity in this muscle accompanied by increased CD36 levels in animals fed under EOD and by changes in shape and localization of mitochondria in muscle fibers. Furthermore, EOD and training decreased muscle damage after strenuous exercise. EOD also reduced the levels of lipid peroxidation in muscle. Our results indicate that EOD improves muscle performance and resistance by increasing lipid catabolism in muscle mitochondria at the same time that prevents lipid peroxidation and muscle damage

    Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations

    Get PDF
    The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems

    Endothelial Dysfunction and Advanced Glycation End Products in Patients with Newly Diagnosed Versus Established Diabetes: From the CORDIOPREV Study

    Get PDF
    Endothelial dysfunction and intima-media thickness of common carotid arteries (IMT-CC) are considered subclinical markers of atherosclerotic cardiovascular disease (ASCVD). Advanced glycation end products (AGEs) are increased in type 2 diabetes mellitus (T2DM) patients, compared with non-diabetics, being implicated in micro- and macrovascular complications. Our aim was to compare serum AGEs levels and subclinical atherosclerotic markers between patients with established and newly diagnosed T2DM. Among 540 patients with T2DM and coronary heart disease from the CORDIOPREV study, 350 patients had established T2DM and 190 patients had newly diagnosed T2DM. Serum levels of AGEs (methylglyoxal (MG) and N-carboxymethyl lysine (CML)) and subclinical atherosclerotic markers (brachial flow-mediated vasodilation (FMD) and IMT-CC) were measured. AGEs levels (all p < 0.001) and IMT-CC (p = 0.025) were higher in patients with established vs. newly diagnosed T2DM, whereas FMD did not differ between the two groups. Patients with established T2DM and severe endothelial dysfunction (i.e., FMD < 2%) had higher serum MG levels, IMT-CC, HOMA-IR and fasting insulin levels than those with newly diagnosed T2DM and non-severe endothelial dysfunction (i.e., FMD ≄ 2%) (all p < 0.05). Serum CML levels were greater in patients with established vs. newly diagnosed T2DM, regardless of endothelial dysfunction severity. Serum AGEs levels and IMT-CC were significantly higher in patients with established vs. newly diagnosed T2DM, highlighting the progressively increased risk of ASCVD in the course of T2DM. Establishing therapeutic strategies to reduce AGEs production and delay the onset of cardiovascular complications in newly diagnosed T2DM patients or minimize ASCVD risk in established T2DM patients is needed

    Tick and host derived compounds detected in the cement complex substance

    Get PDF
    Ticks are obligate hematophagous arthropods and vectors of pathogens affecting human and animal health worldwide. Cement is a complex protein polymerization substance secreted by ticks with antimicrobial properties and a possible role in host attachment, sealing the feeding lesion, facilitating feeding and pathogen transmission, and protection from host immune and inflammatory responses. The biochemical properties of tick cement during feeding have not been fully characterized. In this study, we characterized the proteome of Rhipicephalus microplus salivary glands (sialome) and cement (cementome) together with their physicochemical properties at different adult female parasitic stages. The results showed the combination of tick and host derived proteins and other biomolecules such as a-Gal in cement composition, which varied during the feeding process. We propose that these compounds may synergize in cement formation, solidification and maintenance to facilitate attachment, feeding, interference with host immune response and detachment. These results advanced our knowledge of the complex tick cement composition and suggested that tick and host derived compounds modulate cement properties throughout tick feeding

    A novel combined scientific and artistic approach for the advanced characterization of interactomes: The akirin/subolesin model

    Get PDF
    The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-ÂżB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR– protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ÂżB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell-and stimulus-specific regulation of NF-ÂżB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2–protein interactions in the regulation of the NF-ÂżB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    • 

    corecore