229 research outputs found

    Organic milk supply in Poland: market and policy developments

    Get PDF
    Purpose Global demand for organic milk products gives an opportunity to Polish organic farmers and dairies to supply national, European Union and international milk markets. The aim of this study is to review the historic and contemporary changes in organic milk production and processing in Poland, in order to identify the main factors of influence and to propose the direction of future market and policy development in the sector. Design/methodology/approach In this study, secondary data from a range of literature sources and databases is analysed. The Lorenz’s concentration ratio is applied to the data derived to evaluate the degree of concentration of certified organic farms in the different regions of Poland and conclusions are drawn as a result. Findings Organic dairy farm operations in Poland are small scale and territorially dispersed. Although there is some evidence of growing supply concentration, Polish processors of organic milk face multiple barriers to development not least a lack of continuity of supplies. Whilst global markets are of interest, the development of alternative, innovative food networks in Poland that focus on provenance, integrity and promoting the special health benefits of organic milk would be of value to the sector, but further co-operation and integration is essential to take advantage of these market opportunities. Originality This research underpins the need for appropriate national policies in Poland for the development and actualisation of a dynamic organic milk supply system that delivers value to local, regional and international markets

    miR-125b-5p impacts extracellular vesicle biogenesis, trafficking, and EV subpopulation release in the porcine trophoblast by regulating ESCRT-dependent pathway

    Get PDF
    Abstract Intercellular communication is a critical process that ensures cooperation between distinct cell types at the embryo–maternal interface. Extracellular vesicles (EVs) are considered to be potent mediators of this communication by transferring biological information in their cargo (e.g., miRNAs) to the recipient cells. miRNAs are small non-coding RNAs that affect the function and fate of neighboring and distant cells by regulating gene expression. Focusing on the maternal side of the dialog, we recently revealed the impact of embryonic signals, including miRNAs, on EV-mediated cell-to-cell communication. In this study, we show the regulatory mechanism of the miR-125b-5p ESCRT-mediated EV biogenesis pathway and the further secretion of EVs by trophoblasts at the time when the crucial steps of implantation are taking place. To test the ability of miR-125b-5p to influence the expression of genes involved in the generation and release of EV subpopulations in porcine conceptuses, we used an ex vivo approach. Next, in silico and in vitro analyses were performed to confirm miRNA–mRNA interactions. Finally, EV trafficking and release were assessed using several imaging and particle analysis tools. Our results indicated that conceptus development and implantation are accompanied by changes in the abundance of EV biogenesis and trafficking machinery. ESCRT-dependent EV biogenesis and the further secretion of EVs were modulated by miR-125b-5p, specifically impacting the ESCRT-II complex (via VPS36) and EV trafficking in primary porcine trophoblast cells. The identified miRNA–ESCRT interplay led to the generation and secretion of specific subpopulations of EVs. miRNA present at the embryo–maternal interface governs EV-mediated communication between the mother and the developing conceptus, leading to the generation, trafficking, and release of characteristic subpopulations of EVs

    Circulating Very Small Embryonic-Like Stem Cells in Cardiovascular Disease

    Get PDF
    Very small embryonic-like cells (VSELs) are a population of stem cells residing in the bone marrow (BM) and several organs, which undergo mobilization into peripheral blood (PB) following acute myocardial infarction and stroke. These cells express markers of pluripotent stem cells (PSCs), such as Oct-4, Nanog, and SSEA-1, as well as early cardiac, endothelial, and neural tissue developmental markers. VSELs can be effectively isolated from the BM, umbilical cord blood, and PB. Peripheral blood and BM-derived VSELs can be expanded in co-culture with C2C12 myoblast feeder layer and undergo differentiation into cells from all three germ layers, including cardiomyocytes and vascular endothelial cells. Isolation of VSLEs using fluorescence-activated cell sorting multiparameter live cell sorting system is dependent on gating strategy based on their small size and expression of PSC and absence of hematopoietic lineage markers. VSELs express early cardiac and endothelial lineages markers (GATA-4, Nkx2.5/Csx, VE-cadherin, and von Willebrand factor), SDF-1 chemokine receptor CXCR4, and undergo rapid mobilization in acute MI and ischemic stroke. Experiments in mice showed differentiation of BM-derived VSELs into cardiac myocytes and effectiveness of expanded and pre-differentiated VSLEs in improvement of left ventricular ejection fraction after myocardial infarction

    Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes

    Get PDF
    The importance of metal migration during multielectron redox activity has been characterized, revealing a competing demand to satisfy bonding requirements and local strains in structures upon alkali intercalation. The local structural evolution required to accommodate intercalation in Y2(MoO4)3 and Al2(MoO4)3 has been contrasted by operando characterization methods, including X-ray absorption spectroscopy and diffraction, along with nuclear magnetic resonance measurements. Computational modeling further rationalized behavioral differences. The local structure of Y2(MoO4)3 was maintained upon lithiation, while the structure of Al2(MoO4)3 underwent substantial local atomic rearrangements as the more ionic character of the bonds in Al2(MoO4)3 allowed Al to mix off its starting octahedral position to accommodate strain during cycling. However, this mixing was prevented in the more covalent Y2(MoO4)3, which accommodated strain through rotational motion of polyhedral subunits. Knowing that an increased ionic character can facilitate the diffusion of redox-inactive metals when cycling multielectron electrodes offers a powerful design principle when identifying next-generation intercalation hosts

    Correlated polyhedral rotations in the absence of polarons during electrochemical insertion of lithium in ReO3

    Get PDF
    Understanding the structural transformations that materials undergo during (de)insertion of Li ions is crucial for designing high-performance intercalation hosts as these deformations can lead to significant capacity fade. Herein, we present a study of the metallic defect perovskite ReO3 to determine whether these distortions are driven by polaronic charge transport (i.e., the electrons and ions moving through the lattice in a coupled way) due to the semiconducting nature of most oxide hosts. Employing numerous techniques, including electrochemical probes, operando X-ray diffraction, X-ray photoelectron spectroscopy, and density functional theory calculations, we find that the cubic structure of ReO3 experiences multiple phase changes involving the correlated twisting of rigid octahedral subunits upon lithiation. This results in exceptionally poor long-term cyclability due to large strains upon lithiation, even though metallic character is maintained throughout. This suggests that phase transformations during alkali ion intercalation are the result of local strains in the lattice and not exclusively due to polaron migration

    Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology : recent pros and cons in the midst of a lively debate

    Get PDF
    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation

    Bioactive Lipids and Cationic Antimicrobial Peptides as New Potential Regulators for Trafficking of Bone Marrow-Derived Stem Cells in Patients with Acute Myocardial Infarction

    Get PDF
    Acute myocardial infarction (AMI) triggers mobilization of stem cells from bone marrow (BM) into peripheral blood (PB). Based on our observation that the bioactive sphingophospholipids, sphingosine-1 phosphate (S1P), and ceramide-1 phosphate (C1P) regulate trafficking of hematopoietic stem cells (HSCs), we explored whether they also direct trafficking of non-hematopoietic stem cells (non-HSCs). We detected a 3–6-fold increase in circulating CD34+, CD133+, and CXCR4+ lineage-negative (Lin−)/CD45− cells that are enriched in non-HSCs [including endothelial progenitors (EPCs) and very small embryonic-like stem cells (VSELs)] in PB from AMI patients (P\u3c0.05 vs. controls). Concurrently, we measured a 3-fold increase in S1P and C1P levels in plasma from AMI patients. At the same time, plasma obtained at hospital admission and 6 h after AMI strongly chemoattracted human BM-derived CD34+/Lin− and CXCR4+/Lin− cells in Transwell chemotaxis assays. This effect of plasma was blunted after depletion of S1P level by charcoal stripping and was further inhibited by the specific S1P1 receptor antagonist such as W146 and VPC23019. We also noted that the expression of S1P receptor 1 (S1P1), which is dominant in naïve BM, is reduced after the exposure to S1P at concentrations similar to the plasma S1P levels in patients with AMI, thus influencing the role of S1P in homing to the injured myocardium. Therefore, we examined mechanisms, other than bioactive lipids, that may contribute to the homing of BM non-HSCs to the infarcted myocardium. Hypoxic cardiac tissue increases the expression of cathelicidin and β-2 defensin, which could explain why PB cells isolated from patients with AMI migrated more efficiently to a low, yet physiological, gradient of stromal-derived factor-1 in Transwell migration assays. Together, these observations suggest that while elevated S1P and C1P levels early in the course of AMI may trigger mobilization of non-HSCs into PB, cathelicidin and β-2 defensin could play an important role in their homing to damaged myocardium

    Electrochemical Oxidative Fluorination of an Oxide Perovskite

    Get PDF
    We report on the electrochemical fluorination of the A-site vacant perovskite ReO3 using high-temperature solid-state cells as well as room-temperature liquid electrolytes. Using galvanostatic oxidation and electrochemical impedance spectroscopy, we find that ReO3 can be oxidized by approximately 0.5 equiv of electrons when in contact with fluoride-rich electrolytes. Results from our density functional theory calculations clearly rule out the most intuitive mechanism for charge compensation, whereby F-ions would simply insert onto the A-site of the perovskite structure. Operando X-ray diffraction, neutron total scattering measurements, X-ray spectroscopy, and solid-state 19F NMR with magic-angle spinning were, therefore, used to explore the mechanism by which fluoride ions react with the ReO3 electrode during oxidation. Taken together, our results indicate that a complex structural transformation occurs following fluorination to stabilize the resulting material. While we find that this process of fluorinating ReO3 appears to be only partially reversible, this work demonstrates a practical electrolyte and cell design that can be used to evaluate the mobility of small anions like fluoride that is robust at room temperature and opens new opportunities for exploring the electrochemical fluorination of many new materials
    • …
    corecore