184 research outputs found

    PW03-014B - Gene-expression profiling study in FMF families

    Full text link

    Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer

    Get PDF
    We demonstrate the experimental realization of a two-qubit Mølmer–Sørensen gate on a magnetic field-insensitive hyperfine transition in 9Be+ ions using microwave near-fields emitted by a single microwave conductor embedded in a surface-electrode ion trap. The design of the conductor was optimized to produce a high oscillating magnetic field gradient at the ion position. The measured gate fidelity is determined to be 98.2 ± 1.2% and is limited by technical imperfections, as is confirmed by a comprehensive numerical error analysis. The conductor design can potentially simplify the implementation of multi-qubit gates and represents a self-contained, scalable module for entangling gates within the quantum CCD architecture for an ion-trap quantum computer

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    Multilayer ion trap technology for scalable quantum computing and quantum simulation

    Get PDF
    We present a novel ion trap fabrication method enabling the realization of multilayer ion traps scalable to an in principle arbitrary number of metal-dielectric levels. We benchmark our method by fabricating a multilayer ion trap with integrated three-dimensional microwave circuitry. We demonstrate ion trapping and microwave control of the hyperfine states of a laser cooled 9Be+ ion held at a distance of 35 above the trap surface. This method can be used to implement large-scale ion trap arrays for scalable quantum information processing and quantum simulation

    Robust and Resource-Efficient Microwave Near-Field Entangling 9Be+ Gate

    No full text
    Microwave trapped-ion quantum logic gates avoid spontaneous emission as a fundamental source of decoherence. However, microwave two-qubit gates are still slower than laser-induced gates and hence more sensitive to fluctuations and noise of the motional mode frequency. We propose and implement amplitude-shaped gate drives to obtain resilience to such frequency changes without increasing the pulse energy per gate operation. We demonstrate the resilience by noise injection during a two-qubit entangling gate with 9^9Be+^+ ion qubits. In absence of injected noise, amplitude modulation gives an operation infidelity in the 10310^{-3} range

    Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase

    Get PDF
    CHD8 represents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to CHD8 haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of CHD8 suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region. By looking at dysregulated transcripts following CHD8 knock down (KD), we first identified RAB11B-AS1 as a potential SINEUP RNA for its domain configuration. Then we demonstrated that such lncRNA is able to increase endogenous RAB11B protein amounts without affecting its transcriptional levels. RAB11B has a pivotal role in vesicular trafficking, and mutations on this gene correlate with intellectual disability and microcephaly. Thus, our study discloses an additional layer of molecular regulation which is altered by CHD8 suppression. This represents the first experimental confirmation that naturally occurring SINEUP could be involved in ASD pathogenesis and underscores the importance of dysregulation of functional lncRNAs in neurodevelopment

    Versatile control of 9^9Be+^+ ions using a spectrally tailored UV frequency comb

    Full text link
    We demonstrate quantum control of 9^9Be+^+ ions directly implemented by an optical frequency comb. Based on numerical simulations of the relevant processes in 9^9Be+^+ for different magnetic field regimes, we demonstrate a wide applicability when controlling the comb's spectral properties. We introduce a novel technique for the selective and efficient generation of a spectrally tailored narrow-bandwidth optical frequency comb near 313 nm. We experimentally demonstrate internal state control and internal-motional state coupling of 9^9Be+^+ ions implemented by stimulated-Raman manipulation using a spectrally optimized optical frequency comb. Our pulsed laser approach is a key enabling step for the implementation of quantum logic and quantum information experiments in Penning traps.Comment: Includes supplementary materia

    Cementless ceramic-on-ceramic total hip replacement in children and adolescents

    Get PDF
    Background: total hip replacement (THR) is a rare surgical option in children and adolescents with disabling hip diseases. The aim of this study is to report results from a retrospective cohort of patients aged 18 years or less who underwent cementless Ceramic-on-Ceramic (CoC) THR at a single institution, investigating clinical and radiographic outcomes, survival rates, and reasons for revision of the implants. Materials and methods: we queried the Registry of Prosthetic Orthopedic Implants (RIPO) to identify all children and adolescents undergoing THR between 2000 and 2019 at a single Institution. Inclusion criteria were patients undergoing cementless CoC THR, aged less than 18 years at surgery, followed for at least 2 years. Sixty-eight patients (74 hips) matched all the inclusion criteria and were enrolled in the study. We assessed the clinical and radiographic outcomes, the rate of complications, the survival rate, and reasons for revision of the implants. Results: The mean follow-up was 6.6 ± 4.4 years (range 2–20). The most frequent reason for THR was post-traumatic or chemotherapy-induced avascular necrosis (38%). The overall survival rate of the cohort was 97.6% (95% CI: 84.9–99.7%) at 5 years of follow-up, 94.4% (95% CI: 79.8–98.6%) at 10 years and 15 years of follow-up. Two THR in two patients (2.7%) required revision. With the numbers available, Cox regression analysis could not detect any significant interaction between preoperative or intraoperative variables and implant survivorship (p-value 0.242 to 0.989).” The average HOOS was 85 ± 14.3 (range 30.6–100). Overall, 23 patients (48%) reported excellent HOOS scores (>90 points), 21 patients (44%) reported acceptable HOOS scores (60–90 points) while 4 patients (8%) reported poor outcomes (<60 points). Twenty-one patients (43%) were regularly involved into moderate-to high-intensity sport activities (UCLA ≥ 6). Conclusions: Cementless CoC THR is a successful procedure in children and teenagers, having demonstrated high implant survivorship and low rates of complications and failure. A meticulous preoperative planning and implant selection is mandatory, to avoid implant malposition, which is the main reason of failure and revision in these cases. Further studies are needed to assess the impact of the THR on the psychosocial wellbeing of teenagers, as well as risks and benefits and cost-effectiveness in comparison to the hip preserving surgical procedures
    corecore