3,056 research outputs found

    Sporadic Aurora near Geomagnetic Equator: In the Philippines, on 27 October 1856

    Get PDF
    While low latitude auroral displays are normally considered to be a manifestation of magnetic storms of considerable size, Silverman (2003, JGR, 108, A4) reported numerous "sporadic auroras" which appear locally at relatively low magnetic latitudes during times of just moderate magnetic activity. Here, a case study is presented of an aurora near the geomagnetic equator based on a report from the Philippine Islands on 27 October 1856. An analysis of this report shows it to be consistent with the known cases of sporadic aurorae except for its considerably low magnetic latitude. The record also suggests that extremely low-latitude aurora is not always accompanied with large magnetic storms. The description of its brief appearance leads to a possible physical explanation based on an ephemeral magnetospheric disturbance provoking this sporadic aurora.Comment: 15 pages, 3 figures, accepted for publication in Annales Geophysicae on 18 August 201

    BCS-BEC crossover in a relativistic superfluid and its significance to quark matter

    Full text link
    The character change of a superfluid state due to the variation of the attractive force is investigated in the relativistic framework with a massive fermion. Two crossovers are found. One is a crossover from the usual BCS state to the Bose-Einstein condensation (BEC) of bound fermion pairs. The other is from the BEC to the relativistic Bose-Einstein condensation (RBEC) of nearly massless bound pairs where antiparticles as well as particles dominate the thermodynamics. Possible realization of the BEC and RBEC states in the quark matter is also pointed out.Comment: 5 pages, 1 figure, revtex4; (v2) text has been clarified, references updated; (v3) final version to appear in Phys. Rev.

    Schroedinger functional formalism with domain-wall fermion

    Get PDF
    Finite volume renormalization scheme is one of the most fascinating scheme for non-perturbative renormalization on lattice. By using the step scaling function one can follow running of renormalized quantities with reasonable cost. It has been established the Schroedinger functional is very convenient to define a field theory in a finite volume for the renormalization scheme. The Schroedinger functional, which is characterized by a Dirichlet boundary condition in temporal direction, is well defined and works well for the Yang-Mills theory and QCD with the Wilson fermion. However one easily runs into difficulties if one sets the same sort of the Dirichlet boundary condition for the overlap Dirac operator or the domain-wall fermion. In this paper we propose an orbifolding projection procedure to impose the Schroedinger functional Dirichlet boundary condition on the domain-wall fermion.Comment: 32 page

    A fundamental test for stellar feedback recipes in galaxy simulations

    Get PDF
    Direct comparisons between galaxy simulations and observations that both reach scales < 100 pc are strong tools to investigate the cloud-scale physics of star formation and feedback in nearby galaxies. Here we carry out such a comparison for hydrodynamical simulations of a Milky Way-like galaxy, including stochastic star formation, HII region and supernova feedback, and chemical post-processing at 8 pc resolution. Our simulation shows excellent agreement with almost all kpc-scale and larger observables, including total star formation rates, radial profiles of CO, HI, and star formation through the galactic disc, mass ratios of the ISM components, both whole-galaxy and resolved Kennicutt-Schmidt relations, and giant molecular cloud properties. However, we find that our simulation does not reproduce the observed de-correlation between tracers of gas and star formation on < 100 pc scales, known as the star formation 'uncertainty principle', which indicates that observed clouds undergo rapid evolutionary lifecycles. We conclude that the discrepancy is driven by insufficiently-strong pre-supernova feedback in our simulation, which does not disperse the surrounding gas completely, leaving star formation tracer emission too strongly associated with molecular gas tracer emission, inconsistent with observations. This result implies that the cloud-scale de-correlation of gas and star formation is a fundamental test for feedback prescriptions in galaxy simulations, one that can fail even in simulations that reproduce all other macroscopic properties of star-forming galaxies.Comment: 13 pages, 10 figures, accepted for publication in MNRA

    Comparing simulated 26^{26}Al maps to gamma-ray measurements

    Get PDF
    © ESO 2019.Context. The diffuse gamma-ray emission of 26Al^{26}{\rm Al} at 1.8 MeV reflects ongoing nucleosynthesis in the Milky Way, and traces massive-star feedback in the interstellar medium due to its 1 Myr radioactive lifetime. Interstellar-medium morphology and dynamics are investigated in astrophysics through 3D hydrodynamic simulations in fine detail, as only few suitable astronomical probes are available. Aims. We compare a galactic-scale hydrodynamic simulation of the Galaxy's interstellar medium, including feedback and nucleosynthesis, with gamma-ray data on 26Al^{26}{\rm Al} emission in the Milky Way extracting constraints that are only weakly dependent on the particular realisation of the simulation or Galaxy structure. Methods. Due to constraints and biases in both the simulations and the gamma-ray observations, such comparisons are not straightforward. For a direct comparison, we perform maximum likelihood fits of simulated sky maps as well as observation-based maximum entropy maps to measurements with INTEGRAL/SPI. To study general morphological properties, we compare the scale heights of 26Al^{26}{\rm Al} emission produced by the simulation to INTEGRAL/SPI measurements.} Results. The direct comparison shows that the simulation describes the observed inner Galaxy well, but differs significantly from the observed full-sky emission morphology. Comparing the scale height distribution, we see similarities for small scale height features and a mismatch at larger scale heights. We attribute this to the prominent foreground emission sites that are not captured by the simulation.Peer reviewedFinal Accepted Versio

    Critical property of spin-glass transition in a bond-disordered classical antiferromagnetic Heisenberg model with a biquadratic interaction

    Full text link
    Motivated by puzzling spin-glass behaviors observed in many pyrochlore-based magnets, effects of magnetoelastic coupling to local lattice distortions were recently studied by the authors for a bond-disordered antiferromagnet on a pyrochlore lattice [Phys. Rev. Lett. 107, 047204 (2011)]. Here, we extend the analyses with focusing on the critical property of the spin-glass transition which occurs concomitantly with a nematic transition. Finite-size scaling analyses are performed up to a larger system size with 8192 spins to estimate the transition temperature and critical exponents. The exponents are compared with those in the absence of the magnetoelastic coupling and with those for the canonical spin-glass systems. We also discuss the temperature dependence of the specific heat in comparison with that in canonical spin-glass systems as well as an experimental result.Comment: 4 pages, 2 figures, proceedings for LT2
    corecore