122 research outputs found

    Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability

    Get PDF
    Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30-40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 °C and 25 °C.publishe

    Building better biobetters: from fundamentals to industrial application

    Get PDF
    Biological drugs or biopharmaceuticals off patent open a large market for biosimilars and biobetters, follow-on biologics. Biobetters, in particular, are new drugs designed from existing ones with improved properties such as higher selectivity, stability, half-life and/or lower toxicity/immunogenicity. Glycosylation is one of the most used strategies to improve biological drugs, nonetheless bioconjugation is an additional alternative and refers to the covalent attachment of polymers to biological drugs. Extensive research on novel polymers is underway, nonetheless PEGylation is still the best alternative with the longest clinical track record. Innovative trends based on genetic engineering techniques such as fusion proteins and PASylation are also promising. In this review, all these alternatives wereexplored as well as current market trends, legislation and future perspectives.publishe

    Inhibition of Hsp90 Leads to Cell Cycle Arrest and Apoptosis in Human Malignant Pleural Mesothelioma

    Get PDF
    IntroductionHeat shock protein 90 (Hsp90) is an abundant molecular chaperone that mediates the maturation and stability of a variety of proteins associated with the promotion of cell growth and survival. Inhibition of Hsp90 function leads to proteasomal degradation of its mis-folded client proteins. Recently, Hsp90 has emerged as being of prime importance to the growth and survival of cancer cells and its inhibitors have already been used in phase I and II clinical trials.MethodsWe investigated how 17-allylamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is implicated in human malignant pleural mesothelioma (MM).ResultsWe found that 17-AAG led to significant G1 or G2/M cell cycle arrest, inhibition of cell proliferation, and decrease of AKT, AKT1, and survivin expression in all human malignant pleural mesothelioma cell lines examined. We also observed significant apoptosis induction in all MM cell lines treated with 17-AAG. Furthermore, 17-AAG induced apoptosis in freshly cultured primary MM cells and caused signaling changes identical to those in 17-AAG treated MM cell lines.ConclusionThese results suggest that Hsp90 is strongly associated with the growth and survival of MM and that inhibition of Hsp90 may have therapeutic potential in the treatment of MM

    Extraction and purification of violacein from Yarrowia lipolytica cells using aqueous solutions of surfactants

    Get PDF
    BACKGROUND: L-Asparaginase (ASNase) is an important biopharmaceutical for the treatment of acute lymphoblastic leukemia (ALL); however, with some restrictions due to its high manufacturing costs. Aqueous biphasic systems (ABS) have been suggested as more economical platforms for the separation/purification of proteins, but a full understanding of the mechanisms behind the ASNase partition is still a major challenge. Polymer/salt-based ABS with different driving-forces (salting-out and hydrophilicity/hydrophobicity effects) were herein applied to control the partition of commercial ASNase. RESULTS: The main results showed the ASNase partition to the salt- or polymer-rich phase depending on the ABS studied, with extraction efficiencies higher than 95%. For systems composed of inorganic salts, the ASNase partition was controlled by the polyethylene glycol (PEG) molecular weight used. Cholinium-salts-based ABS were able to promote a preferential ASNase partition to the polymer-rich phase using PEG-600 and to the salt-rich phase using a more hydrophobic polypropylene glycol (PPG)-400 polymer. It was possible to select the ABS composed of PEG-2000 + potassium phosphate buffer as the most efficient to separate the ASNase from the main contaminant proteins (purification factor = 2.4 ± 0.2), while it was able to maintain the enzyme activity for posterior application as part of a therapeutic. CONCLUSION: Polymer/salt ABS can be used to control the partition of ASNase and adjust its purification yields, demonstrating the ABS potential as more economic platform for the selective recovery of therapeutic enzymes from complex broths.publishe

    OBTENÇÃO E CARACTERIZAÇÃO DE NANOPARTÍCULAS DE PLGA PARA VEICULAÇÃO INTRAVENOSA DE PROTEÍNAS

    Get PDF
    O desenvolvimento de nanopartículas é considerado atualmente um sistema promissor para o carreamento de drogas em sítios específicos. O uso de polímeros na obtenção desse sistema pode ser de origem natural ou sintética desde que seja biocompatível ou biodegradável. Desenvolver sistemas de transportes para carrear proteínas requer cuidado com variáveis como tempo de homogeneização e concentração do surfactante, que interferem diretamente na obtenção destas. As nanopartículas foram obtidas pelo método de dupla emulsificação, onde foram elaborados 6 sistemas (A,B,C,D,E e F), utilizando diferentes concentrações de PVA (0,5; 1 e 1,5%) e tempo de homogeneização de 30 e 60 segundos. Os sistemas foram analisados pela técnica de espalhamento de luz dinâmico. Os resultados mostraram que o sistema D apresentou melhor IPD com 0,638, com tamanho de partícula de 678,3 nm, o que sugere homogeneidade maior em relação aos outros sistemas. Porém, há a necessidade de se otimizar o método para obtenção de partículas de tamanhos menores para a veiculação intravenosa

    Prognostic value of hedgehog signal component expressions in hepatoblastoma patients

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Activation of hedgehog (Hh) pathway has been implicated in the development of human malignancies. Hh as well as related downstream target genes has been extensively studied in many kinds of malignant tumours for clinical diagnostic or prognostic utilities. This study aimed at investigating whether Hh molecules provides a molecular marker of hepatoblastoma malignancy.</p> <p>Methods</p> <p>We obtained tissue sections from 32 patients with hepatoblastoma as well as cholestasis and normal control. Immunohistochemical analysis were performed to determine Hh signal components in human hepatoblastoma. The prognostic significance of single expression of Hh signal components were evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis for statistical analysis.</p> <p>Results</p> <p>Expression of Hh signal components showed an increase in hepatoblastoma compared with chole stasis and normal tissues. There was a positive correlation between Smo or Gli1 expression and tumor clinicopathological features, such as histological type, tumor grade, tumor size and clinical stage. Both Smo or Gli1 protein high expression was significantly associated with poor prognosis by univariate analyses and multivariate analyses.</p> <p>Conclusions</p> <p>Abnormal Hh signaling activation plays important roles in the malignant potential of hepatoblastoma. Gli1 expression is an independent prognostic marker.</p

    Adaptive Evolution of a Stress Response Protein

    Get PDF
    Some cancers are mediated by an interplay between tissue damage, pathogens and localised innate immune responses, but the mechanisms that underlie these linkages are only beginning to be unravelled.Here we identify a strong signature of adaptive evolution on the DNA sequence of the mammalian stress response gene SEP53, a member of the epidermal differentiation complex fused-gene family known for its role in suppressing cancers. The SEP53 gene appears to have been subject to adaptive evolution of a type that is commonly (though not exclusively) associated with coevolutionary arms races. A similar pattern of molecular evolution was not evident in the p53 cancer-suppressing gene.Our data thus raises the possibility that SEP53 is a component of the mucosal/epithelial innate immune response engaged in an ongoing interaction with a pathogen. Although the pathogenic stress mediating adaptive evolution of SEP53 is not known, there are a number of well-known candidates, in particular viruses with established links to carcinoma

    Differential expression of HSPA1 and HSPA2 proteins in human tissues; tissue microarray-based immunohistochemical study

    Get PDF
    In the present study we determined the expression pattern of HSPA1 and HSPA2 proteins in various normal human tissues by tissue-microarray based immunohistochemical analysis. Both proteins belong to the HSPA (HSP70) family of heat shock proteins. The HSPA2 is encoded by the gene originally defined as testis-specific, while HSPA1 is encoded by the stress-inducible genes (HSPA1A and HSPA1B). Our study revealed that both proteins are expressed only in some tissues from the 24 ones examined. HSPA2 was detected in adrenal gland, bronchus, cerebellum, cerebrum, colon, esophagus, kidney, skin, small intestine, stomach and testis, but not in adipose tissue, bladder, breast, cardiac muscle, diaphragm, liver, lung, lymph node, pancreas, prostate, skeletal muscle, spleen, thyroid. Expression of HSPA1 was detected in adrenal gland, bladder, breast, bronchus, cardiac muscle, esophagus, kidney, prostate, skin, but not in other tissues examined. Moreover, HSPA2 and HSPA1 proteins were found to be expressed in a cell-type-specific manner. The most pronounced cell-type expression pattern was found for HSPA2 protein. In the case of stratified squamous epithelia of the skin and esophagus, as well as in ciliated pseudostratified columnar epithelium lining respiratory tract, the HSPA2 positive cells were located in the basal layer. In the colon, small intestine and bronchus epithelia HSPA2 was detected in goblet cells. In adrenal gland cortex HSPA2 expression was limited to cells of zona reticularis. The presented results clearly show that certain human tissues constitutively express varying levels of HSPA1 and HSPA2 proteins in a highly differentiated way. Thus, our study can help designing experimental models suitable for cell- and tissue-type-specific functional differences between HSPA2 and HSPA1 proteins in human tissues
    corecore