6,444 research outputs found
Addressing student models of energy loss in quantum tunnelling
We report on a multi-year, multi-institution study to investigate student
reasoning about energy in the context of quantum tunnelling. We use ungraded
surveys, graded examination questions, individual clinical interviews, and
multiple-choice exams to build a picture of the types of responses that
students typically give. We find that two descriptions of tunnelling through a
square barrier are particularly common. Students often state that tunnelling
particles lose energy while tunnelling. When sketching wave functions, students
also show a shift in the axis of oscillation, as if the height of the axis of
oscillation indicated the energy of the particle. We find inconsistencies
between students' conceptual, mathematical, and graphical models of quantum
tunnelling. As part of a curriculum in quantum physics, we have developed
instructional materials to help students develop a more robust and less
inconsistent picture of tunnelling, and present data suggesting that we have
succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb
10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with
revisions that include an appendix with the curriculum materials discussed in
the paper (4 page small group UW-style tutorial
Understanding and Affecting Student Reasoning About Sound Waves
Student learning of sound waves can be helped through the creation of
group-learning classroom materials whose development and design rely on
explicit investigations into student understanding. We describe reasoning in
terms of sets of resources, i.e. grouped building blocks of thinking that are
commonly used in many different settings. Students in our university physics
classes often used sets of resources that were different from the ones we wish
them to use. By designing curriculum materials that ask students to think about
the physics from a different view, we bring about improvement in student
understanding of sound waves. Our curriculum modifications are specific to our
own classes, but our description of student learning is more generally useful
for teachers. We describe how students can use multiple sets of resources in
their thinking, and raise questions that should be considered by both
instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for
publication in the International Journal of Science Educatio
Motivational Objects in Natural Scenes (MONS): A Database of >800 Objects
In daily life, we are surrounded by objects with pre-existing motivational associations. However, these are rarely controlled for in experiments with natural stimuli. Research on natural stimuli would therefore benefit from stimuli with well-defined motivational properties; in turn, such stimuli also open new paths in research on motivation. Here we introduce a database of Motivational Objects in Natural Scenes (MONS). The database consists of 116 scenes. Each scene contains 2 to 7 objects placed at approximately equal distance from the scene center. Each scene was photographed creating 3 versions, with one object (“critical object”) being replaced to vary the overall motivational value of the scene (appetitive, aversive, neutral), while maintaining high visual similarity between the three versions. Ratings on motivation, valence, arousal and recognizability were obtained using internet-based questionnaires. Since the main objective was to provide stimuli of well-defined motivational value, three motivation scales were used: (1) Desire to own the object; (2) Approach/Avoid; (3) Desire to interact with the object. Three sets of ratings were obtained in independent sets of observers: for all 805 objects presented on a neutral background, for 348 critical objects presented in their scene context, and for the entire scenes. On the basis of the motivational ratings, objects were subdivided into aversive, neutral, and appetitive categories. The MONS database will provide a standardized basis for future studies on motivational value under realistic conditions
Using resource graphs to represent conceptual change
We introduce resource graphs, a representation of linked ideas used when
reasoning about specific contexts in physics. Our model is consistent with
previous descriptions of resources and coordination classes. It can represent
mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts.
We use resource graphs to describe several forms of conceptual change:
incremental, cascade, wholesale, and dual construction. For each, we give
evidence from the physics education research literature to show examples of
each form of conceptual change. Where possible, we compare our representation
to models used by other researchers. Building on our representation, we
introduce a new form of conceptual change, differentiation, and suggest several
experimental studies that would help understand the differences between
reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the
Physical Review Special Topics Physics Education Research on March 8, 200
Finite-size critical scaling in Ising spin glasses in the mean-field regime
We study in Ising spin glasses the finite-size effects near the spin-glass
transition in zero field and at the de Almeida-Thouless transition in a field
by Monte Carlo methods and by analytical approximations. In zero field, the
finite-size scaling function associated with the spin-glass susceptibility of
the Sherrington-Kirkpatrick mean-field spin-glass model is of the same form as
that of one-dimensional spin-glass models with power-law long-range
interactions in the regime where they can be a proxy for the Edwards-Anderson
short-range spin-glass model above the upper critical dimension. We also
calculate a simple analytical approximation for the spin-glass susceptibility
crossover function. The behavior of the spin-glass susceptibility near the de
Almeida-Thouless transition line has also been studied, but here we have only
been able to obtain analytically its behavior in the asymptotic limit above and
below the transition. We have also simulated the one-dimensional system in a
field in the non-mean-field regime to illustrate that when the Imry-Ma droplet
length scale exceeds the system size one can then be erroneously lead to
conclude that there is a de Almeida-Thouless transition even though it is
absent.Comment: 10 pages, 7 figure
- …